Advertisement
Advances in Clinical Radiology

Pediatric Whole-Body MRI

Recent Advances and Future Directions

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zadig P.
        • von Brandis E.
        • Lein R.K.
        • et al.
        Whole-body magnetic resonance imaging in children - how and why? A systematic review.
        Pediatr Radiol. 2021; 51: 14-24
        • Greer M.C.
        Whole-body magnetic resonance imaging: techniques and non-oncologic indications.
        Pediatr Radiol. 2018; 48: 1348-1363
        • Gottumukkala R.V.
        • Gee M.S.
        • Hampilos P.J.
        • et al.
        Current and Emerging Roles of Whole-Body MRI in Evaluation of Pediatric Cancer Patients.
        Radiographics. 2019; 39: 516-534
        • Guimaraes J.B.
        • da Cruz I.A.N.
        • Ahlawat S.
        • et al.
        The Role of Whole-Body MRI in Pediatric Musculoskeletal Oncology: Current Concepts and Clinical Applications.
        J Magn Reson Imaging. 2021; https://doi.org/10.1002/jmri.27787
        • Chaturvedi A.
        Pediatric skeletal diffusion-weighted magnetic resonance imaging: part 1 - technical considerations and optimization strategies.
        Pediatr Radiol. 2021; 51: 1562-1574
        • Goo H.W.
        Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications.
        Korean J Radiol. 2015; 16: 973-985
        • Chavhan G.B.
        • Babyn P.S.
        Whole-body MR imaging in children: principles, technique, current applications, and future directions.
        Radiographics. 2011; 31: 1757-1772
        • Tunariu N.
        • Blackledge M.
        • Messiou C.
        • et al.
        What's New for Clinical Whole-body MRI (WB-MRI) in the 21st Century.
        Br J Radiol. 2020; 93: 20200562
        • Hamstra D.A.
        • Rehemtulla A.
        • Ross B.D.
        Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology.
        J Clin Oncol. 2007; 25: 4104-4109
        • Jacobs M.A.
        • Macura K.J.
        • Zaheer A.
        • et al.
        Multiparametric Whole-body MRI with Diffusion-weighted Imaging and ADC Mapping for the Identification of Visceral and Osseous Metastases From Solid Tumors.
        Acad Radiol. 2018; 25: 1405-1414
        • Morita S.
        • Ueno E.
        • Suzuki K.
        • et al.
        Navigator-triggered prospective acquisition correction (PACE) technique vs. conventional respiratory-triggered technique for free-breathing 3D MRCP: an initial prospective comparative study using healthy volunteers.
        J Magn Reson Imaging. 2008; 28: 673-677
        • Dreizin D.
        • Ahlawat S.
        • Del Grande F.
        • et al.
        Gradient-echo in-phase and opposed-phase chemical shift imaging: role in evaluating bone marrow.
        Clin Radiol. 2014; 69: 648-657
        • Morone M.
        • Bali M.A.
        • Tunariu N.
        • et al.
        Whole-Body MRI: Current Applications in Oncology.
        AJR Am J Roentgenol. 2017; 209: W336-W349
        • Maeder Y.
        • Dunet V.
        • Richard R.
        • et al.
        Bone Marrow Metastases: T2-weighted Dixon Spin-Echo Fat Images Can Replace T1-weighted Spin-Echo Images.
        Radiology. 2018; 286: 948-959
        • Bray T.J.P.
        • Singh S.
        • Latifoltojar A.
        • et al.
        Diagnostic utility of whole body Dixon MRI in multiple myeloma: A multi-reader study.
        PLoS One. 2017; 12: e0180562
        • Daldrup-Link H.
        How PET/MR Can Add Value For Children With Cancer.
        Curr Radiol Rep. 2017; 5https://doi.org/10.1007/s40134-017-0207-y
        • States L.J.
        • Reid J.R.
        Whole-Body PET/MRI Applications in Pediatric Oncology.
        AJR Am J Roentgenol. 2020; 215: 713-725
        • Schooler G.R.
        • Davis J.T.
        • Daldrup-Link H.E.
        • et al.
        Current utilization and procedural practices in pediatric whole-body MRI.
        Pediatr Radiol. 2018; 48: 1101-1107
        • Mohan S.
        • Moineddin R.
        • Chavhan G.B.
        Pediatric whole-body magnetic resonance imaging: Intra-individual comparison of technical quality, artifacts, and fixed structure visibility at 1.5 and 3 T.
        Indian J Radiol Imaging. 2015; 25: 353-358
        • Ditchfield M.
        3T MRI in paediatrics: challenges and clinical applications.
        Eur J Radiol. 2008; 68: 309-319
        • Kuhl C.K.
        • Traber F.
        • Schild H.H.
        Whole-body high-field-strength (3.0-T) MR Imaging in Clinical Practice. Part I. Technical considerations and clinical applications.
        Radiology. 2008; 246: 675-696
        • Padhani A.R.
        • Koh D.M.
        • Collins D.J.
        Whole-body diffusion-weighted MR imaging in cancer: current status and research directions.
        Radiology. 2011; 261: 700-718
        • Fenchel M.
        • Scheule A.M.
        • Stauder N.I.
        • et al.
        Atherosclerotic disease: whole-body cardiovascular imaging with MR system with 32 receiver channels and total-body surface coil technology--initial clinical results.
        Radiology. 2006; 238: 280-291
        • Schaefer J.F.
        • Berthold L.D.
        • Hahn G.
        • et al.
        Whole-Body MRI in Children and Adolescents - S1 Guideline.
        Rofo. 2019; 191 (Ganzkorper-Magnetresonanztomografie im Kindes- und Jugendalter - S1-Leitlinie): 618-625
        • Zhang T.
        • Grafendorfer T.
        • Cheng J.Y.
        • et al.
        A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T.
        Magn Reson Med. 2016; 76: 1015-1021
        • Winkler S.A.
        • Corea J.
        • Lechene B.
        • et al.
        Evaluation of a Flexible 12-Channel Screen-printed Pediatric MRI Coil.
        Radiology. 2019; 291: 180-185
        • Li N.
        • Zheng H.
        • Xu G.
        • et al.
        Simultaneous Head and Spine MR Imaging in Children Using a Dedicated Multichannel Receiver System at 3T.
        IEEE Trans Biomed Eng. 2021; 68: 3659-3670
        • Wu L.M.
        • Gu H.Y.
        • Zheng J.
        • et al.
        Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis.
        J Magn Reson Imaging. 2011; 34: 128-135
        • Avenarius D.F.M.
        • Ording Muller L.S.
        • Rosendahl K.
        Joint Fluid, Bone Marrow Edemalike Changes, and Ganglion Cysts in the Pediatric Wrist: Features That May Mimic Pathologic Abnormalities-Follow-Up of a Healthy Cohort.
        AJR Am J Roentgenol. 2017; 208: 1352-1357
        • Shabshin N.
        • Schweitzer M.E.
        • Morrison W.B.
        • et al.
        High-signal T2 changes of the bone marrow of the foot and ankle in children: red marrow or traumatic changes?.
        Pediatr Radiol. 2006; 36: 670-676
        • Teixeira S.R.
        • Elias Junior J.
        • Nogueira-Barbosa M.H.
        • et al.
        Whole-body magnetic resonance imaging in children: state of the art.
        Radiol Bras. 2015; 48: 111-120
        • Anupindi S.A.
        • Bedoya M.A.
        • Lindell R.B.
        • et al.
        Diagnostic Performance of Whole-Body MRI as a Tool for Cancer Screening in Children With Genetic Cancer-Predisposing Conditions.
        AJR Am J Roentgenol. 2015; 205: 400-408
        • Lavdas I.
        • Glocker B.
        • Rueckert D.
        • et al.
        Machine learning in whole-body MRI: experiences and challenges from an applied study using multicentre data.
        Clin Radiol. 2019; 74: 346-356
      1. Available at: https://www-acrdsi-org.ezpminer.urmc.rochester.edu/DSI-Services/FDA-Cleared-AI-Algorithms. Accessed January 1, 2022,

        • Muehe A.M.
        • Theruvath A.J.
        • Lai L.
        • et al.
        How to Provide Gadolinium-Free PET/MR Cancer Staging of Children and Young Adults in Less than 1 h: the Stanford Approach.
        Mol Imaging Biol. 2018; 20: 324-335
        • Schmall J.P.
        • Surti S.
        • Otero H.J.
        • et al.
        Investigating Low-Dose Image Quality in Whole-Body Pediatric (18)F-FDG Scans Using Time-of-Flight PET/MRI.
        J Nucl Med. 2021; 62: 123-130
        • Spijkers S.
        • Littooij A.S.
        • Kwee T.C.
        • et al.
        Whole-body MRI versus an FDG-PET/CT-based reference standard for staging of paediatric Hodgkin lymphoma: a prospective multicentre study.
        Eur Radiol. 2021; 31: 1494-1504
        • Spijkers S.
        • Littooij A.S.
        • Kwee T.C.
        • et al.
        Whole-body MRI versus an [(18)F]FDG-PET/CT-based reference standard for early response assessment and restaging of paediatric Hodgkin's lymphoma: a prospective multicentre study.
        Eur Radiol. 2021; 31: 8925-8936
        • Burris N.S.
        • Johnson K.M.
        • Larson P.E.
        • et al.
        Detection of Small Pulmonary Nodules with Ultrashort Echo Time Sequences in Oncology Patients by Using a PET/MR System.
        Radiology. 2016; 278: 239-246
        • Toth G.B.
        • Varallyay C.G.
        • Horvath A.
        • et al.
        Current and potential imaging applications of ferumoxytol for magnetic resonance imaging.
        Kidney Int. 2017; 92: 47-66
        • van Vucht N.
        • Santiago R.
        • Lottmann B.
        • et al.
        The Dixon technique for MRI of the bone marrow.
        Skeletal Radiol. 2019; 48: 1861-1874