Advertisement
Review Article| Volume 4, ISSUE 1, P215-229, September 2022

Download started.

Ok

Imaging Embryonal Tumors of the Central Nervous System

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • WHO Classification of Tumours Editorial Board
        5th edition. Central nervous system tumours. 6. International agency for research on cancer, Lyon (France)2021
        • Ostrom Q.T.
        • Patil N.
        • Cioffi G.
        • et al.
        CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017.
        Neuro Oncol. 2020; 22: iv1-iv96
        • Rosemberg S.
        • Fujiwara D.
        Epidemiology of pediatric tumors of the nervous system according to the WHO 2000 classification: a report of 1,195 cases from a single institution.
        Childs Nerv Syst. 2005; 21: 940-944
        • Mueller D.P.
        • Moore S.A.
        • Sato Y.
        • et al.
        MRI spectrum of medulloblastoma.
        Clin Imaging. 1992; 16: 250-255
        • Eran A.
        • Ozturk A.
        • Aygun N.
        • et al.
        Medulloblastoma: atypical CT and MRI findings in children.
        Pediatr Radiol. 2010; 40: 1254-1262
        • Fruehwald-Pallamar J.
        • Puchner S.B.
        • Rossi A.
        • et al.
        Magnetic resonance imaging spectrum of medulloblastoma.
        Neuroradiology. 2011; 53: 387-396
        • Rutkowski S.
        • von Hoff K.
        • Emser A.
        • et al.
        Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis.
        J Clin Oncol. 2010; 28: 4961-4968
        • Taylor M.D.
        • Northcott P.A.
        • Korshunov A.
        • et al.
        Molecular subgroups of medulloblastoma: the current consensus.
        Acta Neuropathol. 2012; 123: 465-472
        • Gibson P.
        • Tong Y.
        • Robinson G.
        • et al.
        Subtypes of medulloblastoma have distinct developmental origins.
        Nature. 2010; 468: 1095-1099
        • Ellison D.W.
        • Dalton J.
        • Kocak M.
        • et al.
        Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups.
        Acta Neuropathol. 2011; 121: 381-396
        • Wright K.D.
        • von der Embse K.
        • Coleman J.
        • et al.
        Isochromosome 17q, MYC amplification and large cell/anaplastic phenotype in a case of medullomyoblastoma with extracranial metastases.
        Pediatr Blood Cancer. 2012; 59: 561-564
        • Perreault S.
        • Ramaswamy V.
        • Achrol A.S.
        • et al.
        MRI surrogates for molecular subgroups of medulloblastoma.
        AJNR Am J Neuroradiol. 2014; 35: 1263-1269
        • Blüml S.
        • Margol A.S.
        • Sposto R.
        • et al.
        Molecular subgroups of medulloblastoma identification using noninvasive magnetic resonance spectroscopy.
        Neuro Oncol. 2016; 18: 126-131
        • Patay Z.
        • DeSain L.A.
        • Hwang S.N.
        • et al.
        MR Imaging characteristics of wingless-type-subgroup pediatric medulloblastoma.
        AJNR Am J Neuroradiol. 2015; 36: 2386-2393
        • Cavalli F.M.G.
        • Remke M.
        • Rampasek L.
        • et al.
        Intertumoral heterogeneity within medulloblastoma subgroups.
        Cancer Cell. 2017; 31: 737-754.e736
        • Hovestadt V.
        • Ayrault O.
        • Swartling F.J.
        • et al.
        Medulloblastomics revisited: biological and clinical insights from thousands of patients.
        Nat Rev Cancer. 2020; 20: 42-56
        • Ramaswamy V.
        • Remke M.
        • Bouffet E.
        • et al.
        Risk stratification of childhood medulloblastoma in the molecular era: the current consensus.
        Acta Neuropathol. 2016; 131: 821-831
        • Schwalbe E.C.
        • Lindsey J.C.
        • Nakjang S.
        • et al.
        Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study.
        Lancet Oncol. 2017; 18: 958-971
        • Albright A.L.
        • Wisoff J.H.
        • Zeltzer P.M.
        • et al.
        Effects of medulloblastoma resections on outcome in children: a report from the Children's Cancer Group.
        Neurosurgery. 1996; 38: 265-271
        • Zeltzer P.M.
        • Boyett J.M.
        • Finlay J.L.
        • et al.
        Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children's Cancer Group 921 randomized phase III study.
        J Clin Oncol. 1999; 17: 832-845
        • Warren K.E.
        • Vezina G.
        • Poussaint T.Y.
        • et al.
        Response assessment in medulloblastoma and leptomeningeal seeding tumors: recommendations from the Response Assessment in Pediatric Neuro-Oncology committee.
        Neuro Oncol. 2018; 20: 13-23
        • Dufour C.
        • Beaugrand A.
        • Pizer B.
        • et al.
        Metastatic medulloblastoma in childhood: chang's classification revisited.
        Int J Surg Oncol. 2012; 2012: 245385
        • Mata-Mbemba D.
        • Zapotocky M.
        • Laughlin S.
        • et al.
        MRI characteristics of primary tumors and metastatic lesions in molecular subgroups of pediatric medulloblastoma: a single-center study.
        AJNR Am J Neuroradiol. 2018; 39: 949-955
        • Korshunov A.
        • Sturm D.
        • Ryzhova M.
        • et al.
        Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity.
        Acta Neuropathol. 2014; 128: 279-289
        • Lambo S.
        • von Hoff K.
        • Korshunov A.
        • et al.
        ETMR: a tumor entity in its infancy.
        Acta Neuropathol. 2020; 140: 249-266
        • Korshunov A.
        • Ryzhova M.
        • Jones D.T.
        • et al.
        LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR).
        Acta Neuropathol. 2012; 124: 875-881
        • Sin-Chan P.
        • Mumal I.
        • Suwal T.
        • et al.
        A C19MC-LIN28A-MYCN Oncogenic circuit driven by hijacked super-enhancers is a distinct therapeutic vulnerability in ETMRs: a lethal brain tumor.
        Cancer Cell. 2019; 36: 51-67.e57
        • Khan S.
        • Solano-Paez P.
        • Suwal T.
        • et al.
        Clinical phenotypes and prognostic features of embryonal tumours with multi-layered rosettes: a rare brain tumor registry study.
        Lancet Child Adolesc Health. 2021; 5: 800-813
        • Biegel J.A.
        • Zhou J.Y.
        • Rorke L.B.
        • et al.
        Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors.
        Cancer Res. 1999; 59: 74-79
        • Holdhof D.
        • Johann P.D.
        • Spohn M.
        • et al.
        Atypical teratoid/rhabdoid tumors (ATRTs) with SMARCA4 mutation are molecularly distinct from SMARCB1-deficient cases.
        Acta Neuropathol. 2021; 141: 291-301
        • Ostrom Q.T.
        • Chen Y.
        • de Blank P.M.
        • et al.
        The descriptive epidemiology of atypical teratoid/rhabdoid tumors in the United States, 2001-2010.
        Neuro Oncol. 2014; 16: 1392-1399
        • Johann P.D.
        • Erkek S.
        • Zapatka M.
        • et al.
        Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes.
        Cancer Cell. 2016; 29: 379-393
        • Nowak J.
        • Nemes K.
        • Hohm A.
        • et al.
        Magnetic resonance imaging surrogates of molecular subgroups in atypical teratoid/rhabdoid tumor.
        Neuro Oncol. 2018; 20: 1672-1679
        • Tamrazi B.
        • Venneti S.
        • Margol A.
        • et al.
        Pediatric atypical teratoid/rhabdoid tumors of the brain: identification of metabolic subgroups using in vivo (1)H-MR Spectroscopy.
        AJNR Am J Neuroradiol. 2019; 40: 872-877
        • Hasselblatt M.
        • Oyen F.
        • Gesk S.
        • et al.
        Cribriform neuroepithelial tumor (CRINET): a nonrhabdoid ventricular tumor with INI1 loss and relatively favorable prognosis.
        J Neuropathol Exp Neurol. 2009; 68: 1249-1255
        • Park J.Y.
        • Kim E.
        • Kim D.W.
        • et al.
        Cribriform neuroepithelial tumor in the third ventricle: a case report and literature review.
        Neuropathology. 2012; 32: 570-576
        • Arnold M.A.
        • Stallings-Archer K.
        • Marlin E.
        • et al.
        Cribriform neuroepithelial tumor arising in the lateral ventricle.
        Pediatr Dev Pathol. 2013; 16: 301-307
        • Moss J.
        • Magenheim J.
        • Neiman D.
        • et al.
        Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease.
        Nat Commun. 2018; 9: 5068
        • Kim M.
        • Costello J.
        DNA methylation: an epigenetic mark of cellular memory.
        Exp Mol Med. 2017; 49: e322
        • Sturm D.
        • Orr B.A.
        • Toprak U.H.
        • et al.
        New brain tumor entities emerge from molecular classification of CNS-PNETs.
        Cell. 2016; 164: 1060-1072
        • Louis D.N.
        • Perry A.
        • Wesseling P.
        • et al.
        The 2021 WHO Classification of tumors of the central nervous system: a summary.
        Neuro Oncol. 2021; 23: 1231-1251