Advertisement
Advances in Clinical Radiology

Cardiac PET/MR

  • Joanna E. Kusmirek
    Correspondence
    Corresponding author.
    Affiliations
    Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
    Search for articles by this author
  • Alan B. McMillan
    Affiliations
    Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA

    Department of Medical Physics, University of Wisconsin-Madison 1111 Highland Avenue, Madison, WI 53705-2275, USA

    Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 2415 Engineering Hall1415 Engineering Drive, Madison, WI 53706-1691, USA

    Department of Biomedical Engineering, Engineering Centers Building 1550 Engineering Drive, Room #2126, Madison, WI 53706, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nekolla S.G.
        • Martinez-Moeller A.
        • Saraste A.
        PET and MRI in cardiac imaging: from validation studies to integrated applications.
        Eur J Nucl Med Mol Imaging. 2009; 36: S121-S130
        • Rischpler C.
        • Nekolla S.G.
        • Dregely I.
        • Schwaiger M.
        Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects.
        J Nucl Med. 2013; 54: 402-415
        • Ferda J.
        • Hromádka M.
        • Baxa J.
        Imaging of the myocardium using (18)F-FDG-PET/MRI.
        Eur J Radiol. 2016; 85: 1900-1908
        • Rischpler C.
        • Nekolla S.G.
        • Heusch G.
        • et al.
        Cardiac PET/MRI-an update.
        Eur J Hybrid Imaging. 2019; 3: 2
        • Robson P.M.
        • Dey D.
        • Newby D.E.
        • et al.
        MR/PET imaging of the cardiovascular system.
        JACC Cardiovasc Imaging. 2017; 10: 1165-1179
        • Glasenapp A.
        • Hess A.
        • Thackeray J.T.
        Molecular imaging in nuclear cardiology: pathways to individual precision medicine.
        J Nucl Cardiol. 2020; 27: 2195-2201
        • de Boer R.A.
        • De Keulenaer G.
        • Bauersachs J.
        • et al.
        Towards better definition, quantification and treatment of fibrosis in heart failure. a scientific roadmap by the committee of translational research of the heart failure association (HFA) of the european society of cardiology.
        Eur J Heart Fail. 2019; 21: 272-285
        • Bartlett B.
        • Ludewick H.P.
        • Lee S.
        • Verma S.
        • Francis R.J.
        • Dwivedi G.
        Imaging inflammation in patients and animals: focus on PET imaging the vulnerable plaque.
        Cells. 2021; 10: 2573
        • Catalano O.A.
        • Masch W.R.
        • Catana C.
        • et al.
        An overview of PET/MR, focused on clinical applications.
        Abdom Radiol (NY). 2017; 42: 631-644
        • Ehman E.C.
        • Johnson G.B.
        • Villanueva-Meyer J.E.
        • et al.
        PET/MRI: where might it replace PET/CT?.
        J Magn Reson Imaging. 2017; 46: 1247-1262
        • Huo E.
        • Wilson D.M.
        • Eisenmenger L.
        • Hope T.A.
        The role of PET/MR imaging in precision medicine.
        PET Clin. 2017; 12: 489-501
        • Quick H.H.
        Integrated PET/MR.
        J Magn Reson Imaging. 2014; 39: 243-258
        • Wehrl H.F.
        • Sauter A.W.
        • Divine M.R.
        • Pichler B.J.
        Combined PET/MR: a technology becomes mature.
        J Nucl Med. 2015; 56: 165-168
        • Grant A.M.
        • Deller T.W.
        • Khalighi M.M.
        • Maramraju S.H.
        • Delso G.
        • Levin C.S.
        NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system.
        Med Phys. 2016; 43: 2334
        • Herzog H.
        • Lerche C.
        Advances in clinical PET/MRI instrumentation.
        PET Clin. 2016; 11: 95-103
        • Hofmann M.
        • Pichler B.
        • Schölkopf B.
        • Beyer T.
        Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.
        Eur J Nucl Med Mol Imaging. 2009; 36: S93-S104
        • Keereman V.
        • Mollet P.
        • Berker Y.
        • Schulz V.
        • Vandenberghe S.
        Challenges and current methods for attenuation correction in PET/MR.
        MAGMA. 2013; 26: 81-98
        • Wagenknecht G.
        • Kaiser H.J.
        • Mottaghy F.M.
        • Herzog H.
        MRI for attenuation correction in PET: methods and challenges.
        MAGMA. 2013; 26: 99-113
        • Aznar M.C.
        • Sersar R.
        • Saabye J.
        • et al.
        Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging.
        Eur J Radiol. 2014; 83: 1177-1183
        • Paulus D.H.
        • Quick H.H.
        • Geppert C.
        • et al.
        Whole-body PET/MR imaging: quantitative evaluation of a novel model-based MR attenuation correction method including bone.
        J Nucl Med. 2015; 56: 1061-1066
        • Samarin A.
        • Burger C.
        • Wollenweber S.D.
        • et al.
        PET/MR imaging of bone lesions--implications for PET quantification from imperfect attenuation correction.
        Eur J Nucl Med Mol Imaging. 2012; 39: 1154-1160
        • Spick C.
        • Herrmann K.
        • Czernin J.
        18F-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 patients.
        J Nucl Med. 2016; 57: 420-430
        • Liu F.
        • Jang H.
        • Kijowski R.
        • Bradshaw T.
        • McMillan A.B.
        Deep learning MR imaging-based attenuation correction for PET/MR Imaging.
        Radiology. 2018; 286: 676-684
        • McMillan A.B.
        • Bradshaw T.J.
        Artificial intelligence-based data corrections for attenuation and scatter in position emission tomography and single-photon emission computed tomography.
        PET Clin. 2021; 16: 543-552
        • Spadea M.F.
        • Maspero M.
        • Zaffino P.
        • Seco J.
        Deep learning based synthetic-CT generation in radiotherapy and PET: a review.
        Med Phys. 2021; 48: 6537-6566
        • Kolbitsch C.
        • Ahlman M.A.
        • Davies-Venn C.
        • et al.
        Cardiac and respiratory motion correction for simultaneous cardiac PET/MR.
        J Nucl Med. 2017; 58: 846-852
        • Küstner T.
        • Schwartz M.
        • Martirosian P.
        • et al.
        MR-based respiratory and cardiac motion correction for PET imaging.
        Med Image Anal. 2017; 42: 129-144
        • Munoz C.
        • Ellis S.
        • Nekolla S.G.
        • et al.
        MR-guided motion-corrected PET image reconstruction for cardiac PET-MR.
        J Nucl Med. 2021; 62: 1768-1774
        • Ladefoged C.N.
        • Hasbak P.
        • Hornnes C.
        • Højgaard L.
        • Andersen F.L.
        Low-dose PET image noise reduction using deep learning: application to cardiac viability FDG imaging in patients with ischemic heart disease.
        Phys Med Biol. 2021; 66: 054003
        • Park C.J.
        • Chen W.
        • Pirasteh A.
        • et al.
        Initial experience with low-dose 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging with deep learning enhancement.
        J Comput Assist Tomogr. 2021; 45: 637-642
        • Wang T.
        • Lei Y.
        • Fu Y.
        • et al.
        Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods.
        Phys Med. 2020; 76: 294-306
        • Gulati M.
        • Levy P.D.
        • Mukherjee D.
        • et al.
        2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines.
        Circulation. 2021; 144: e368-e454
        • Takx R.A.P.
        • Blomberg B.A.
        • Aidi H.E.
        • et al.
        Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis.
        Circ Cardiovasc Imaging. 2015; 8: e002666
        • Juárez-Orozco L.E.
        • Tio R.A.
        • Alexanderson E.
        • et al.
        Quantitative myocardial perfusion evaluation with positron emission tomography and the risk of cardiovascular events in patients with coronary artery disease: a systematic review of prognostic studies.
        Eur Heart J - Cardiovasc Imaging. 2017; 19: 1179-1187
        • Ziadi M.C.
        • deKemp R.A.
        • Williams K.
        • et al.
        Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease?.
        J Nucl Cardiol. 2012; 19: 670-680
        • Pärkkä J.P.
        • Niemi P.
        • Saraste A.
        • et al.
        Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans.
        Magn Reson Med. 2006; 55: 772-779
        • Tomiyama Y.
        • Manabe O.
        • Oyama-Manabe N.
        • et al.
        Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with (15) O-water PET.
        J Magn Reson Imaging. 2015; 42: 754-762
        • Fritz-Hansen T.
        • Hove J.D.
        • Kofoed K.F.
        • Kelbaek H.
        • Larsson H.B.
        Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography.
        J Magn Reson Imaging. 2008; 27: 818-824
        • Morton G.
        • Chiribiri A.
        • Ishida M.
        • et al.
        Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography.
        J Am Coll Cardiol. 2012; 60: 1546-1555
        • Pack N.A.
        • DiBella E.V.
        • Rust T.C.
        • et al.
        Estimating myocardial perfusion from dynamic contrast-enhanced CMR with a model-independent deconvolution method.
        J Cardiovasc Magn Reson. 2008; 10: 52
        • Engblom H.
        • Xue H.
        • Akil S.
        • et al.
        Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography.
        J Cardiovasc Magn Reson. 2017; 19: 78
        • Qayyum A.A.
        • Hasbak P.
        • Larsson H.B.W.
        • et al.
        Quantification of myocardial perfusion using cardiac magnetic resonance imaging correlates significantly to rubidium-82 positron emission tomography in patients with severe coronary artery disease: a preliminary study.
        Eur J Radiol. 2014; 83: 1120-1128
        • Kunze K.P.
        • Nekolla S.G.
        • Rischpler C.
        • et al.
        Myocardial perfusion quantification using simultaneously acquired (13) NH(3)-ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress.
        Magn Reson Med. 2018; 80: 2641-2654
        • Nazir M.S.
        • Gould S.M.
        • Milidonis X.
        • et al.
        Simultaneous (13)N-Ammonia and gadolinium first-pass myocardial perfusion with quantitative hybrid PET-MR imaging: a phantom and clinical feasibility study.
        Eur J Hybrid Imaging. 2019; 3: 15
        • Everaars H.
        • van Diemen P.A.
        • Bom M.J.
        • et al.
        Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography.
        Eur J Nucl Med Mol Imaging. 2020; 47: 1688-1697
        • Kero T.
        • Johansson E.
        • Engström M.
        • et al.
        Evaluation of quantitative CMR perfusion imaging by comparison with simultaneous (15)O-water-PET.
        J Nucl Cardiol. 2021; 28: 1252-1266
        • Klein C.
        • Nekolla S.G.
        • Bengel F.M.
        • et al.
        Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging.
        Circulation. 2002; 105: 162-167
        • Rischpler C.
        • Langwieser N.
        • Souvatzoglou M.
        • et al.
        PET/MRI early after myocardial infarction: evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 661-669
        • Beitzke D.
        • Rasul S.
        • Lassen M.L.
        • et al.
        Assessment of myocardial viability in ischemic heart disease by PET/MRI: comparison of left ventricular perfusion, hibernation, and scar burden.
        Acad Radiol. 2020; 27: 188-197
        • Bulluck H.
        • White S.K.
        • Fröhlich G.M.
        • et al.
        Quantifying the area at risk in reperfused ST-segment-elevation myocardial infarction patients using hybrid cardiac positron emission tomography-magnetic resonance imaging.
        Circ Cardiovasc Imaging. 2016; 9: e003900
        • Vitadello T.
        • Kunze K.P.
        • Nekolla S.G.
        • et al.
        Hybrid PET/MR imaging for the prediction of left ventricular recovery after percutaneous revascularisation of coronary chronic total occlusions.
        Eur J Nucl Med Mol Imaging. 2020; 47: 3074-3083
        • Kiko T.
        • Yokokawa T.
        • Misaka T.
        • et al.
        Myocardial viability with chronic total occlusion assessed by hybrid positron emission tomography/magnetic resonance imaging.
        J Nucl Cardiol. 2021; 28: 2335-2342
        • Nazir M.S.
        • Ismail T.F.
        • Reyes E.
        • Chiribiri A.
        • Kaufmann P.A.
        • Plein S.
        Hybrid positron emission tomography-magnetic resonance of the heart: current state of the art and future applications.
        Eur Heart J Cardiovasc Imaging. 2018; 19: 962-974
        • Evans N.R.
        • Tarkin J.M.
        • Le E.P.
        • et al.
        Integrated cardiovascular assessment of atherosclerosis using PET/MRI.
        Br J Radiol. 2020; 93: 20190921
        • Joshi N.V.
        • Vesey A.T.
        • Williams M.C.
        • et al.
        18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial.
        Lancet. 2014; 383: 705-713
        • Kwiecinski J.
        • Slomka P.J.
        • Dweck M.R.
        • Newby D.E.
        • Berman D.S.
        Vulnerable plaque imaging using (18)F-sodium fluoride positron emission tomography.
        Br J Radiol. 2020; 93: 20190797
        • Kitagawa T.
        • Yamamoto H.
        • Toshimitsu S.
        • et al.
        (18)F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis.
        Atherosclerosis. 2017; 263: 385-392
        • Kwiecinski J.
        • Lassen M.L.
        • Slomka P.J.
        Advances in quantitative analysis of (18)F-sodium fluoride coronary imaging.
        Mol Imaging. 2021; 2021: 8849429
      1. Fiz F, Piccardo A, Morbelli S, Bottoni G, Piana M, Cabria M, Bagnasco M, Sambuceti G. Longitudinal analysis of atherosclerotic plaques evolution: an (18)F-NaF PET/CT study. J Nucl Cardiol. 2021. Epub 2021/02/26. doi: 10.1007/s12350-021-02556-3.

        • Marchesseau S.
        • Seneviratna A.
        • Sjöholm A.T.
        • et al.
        Hybrid PET/CT and PET/MRI imaging of vulnerable coronary plaque and myocardial scar tissue in acute myocardial infarction.
        J Nucl Cardiol. 2018; 25: 2001-2011
        • Robson P.M.
        • Dweck M.R.
        • Trivieri M.G.
        • et al.
        Coronary artery PET/MR imaging: feasibility, limitations, and solutions.
        JACC Cardiovasc Imaging. 2017; 10: 1103-1112
        • Ćorović A.
        • Nus M.
        • Mallat Z.
        • Rudd J.H.F.
        • Tarkin J.M.
        PET imaging of post-infarct myocardial inflammation.
        Curr Cardiol Rep. 2021; 23: 99
        • Wilk B.
        • Wisenberg G.
        • Dharmakumar R.
        • Thiessen J.D.
        • Goldhawk D.E.
        • Prato F.S.
        Hybrid PET/MR imaging in myocardial inflammation post-myocardial infarction.
        J Nucl Cardiol. 2020; 27: 2083-2099
        • Thackeray J.T.
        • Bengel F.M.
        Molecular imaging of myocardial inflammation with positron emission tomography post-ischemia: a determinant of subsequent remodeling or recovery.
        JACC Cardiovasc Imaging. 2018; 11: 1340-1355
        • Rischpler C.
        • Dirschinger R.J.
        • Nekolla S.G.
        • et al.
        Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome.
        Circ Cardiovasc Imaging. 2016; 9: e004316
        • Kunze K.P.
        • Dirschinger R.J.
        • Kossmann H.
        • et al.
        Quantitative cardiovascular magnetic resonance: extracellular volume, native T1 and 18F-FDG PET/CMR imaging in patients after revascularized myocardial infarction and association with markers of myocardial damage and systemic inflammation.
        J Cardiovasc Magn Reson. 2018; 20: 33
        • Pan J.A.
        • Salerno M.
        Clinical utility and future applications of PET/CT and PET/CMR in cardiology.
        Diagnostics (Basel). 2016; 6: 32
        • Hess A.
        • Thackeray J.T.
        • Wollert K.C.
        • Bengel F.M.
        Radionuclide image-guided repair of the heart.
        JACC Cardiovasc Imaging. 2020; 13: 2415-2429
        • Curley D.
        • Lavin Plaza B.
        • Shah A.M.
        • Botnar R.M.
        Molecular imaging of cardiac remodelling after myocardial infarction.
        Basic Res Cardiol. 2018; 113: 10
        • Werner R.A.
        • Thackeray J.T.
        • Diekmann J.
        • Weiberg D.
        • Bauersachs J.
        • Bengel F.M.
        The changing face of nuclear cardiology: guiding cardiovascular care toward molecular medicine.
        J Nucl Med. 2020; 61: 951-961
        • Maddahi J.
        • Lazewatsky J.
        • Udelson J.E.
        • et al.
        Phase-III clinical trial of fluorine-18 flurpiridaz positron emission tomography for evaluation of coronary artery disease.
        J Am Coll Cardiol. 2020; 76: 391-401
        • Bourque J.M.
        • Hanson C.A.
        • Agostini D.
        • et al.
        Assessing myocardial perfusion in suspected coronary artery disease: rationale and design of the second phase 3, open-label multi-center study of flurpiridaz (F-18) injection for positron emission tomography (PET) imaging.
        J Nucl Cardiol. 2021; 28: 1105-1116
        • Cardoso R.
        • Leucker T.M.
        Applications of PET-mr imaging in cardiovascular disorders.
        PET Clin. 2020; 15: 509-520
        • Sherif H.M.
        • Saraste A.
        • Nekolla S.G.
        • et al.
        Molecular imaging of early αvβ3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats.
        J Nucl Med. 2012; 53: 318-323
        • Thackeray J.T.
        • Derlin T.
        • Haghikia A.
        • et al.
        Molecular imaging of the chemokine receptor CXCR4 After acute myocardial infarction.
        JACC Cardiovasc Imaging. 2015; 8: 1417-1426
        • Jenkins W.S.A.
        • Vesey A.T.
        • Stirrat C.
        • et al.
        Cardiac αVβ3 integrin expression following acute myocardial infarction in humans.
        Heart. 2017; 103: 607-615
        • Manabe O.
        • Kikuchi T.
        • Scholte A.J.H.A.
        • et al.
        Radiopharmaceutical tracers for cardiac imaging.
        J Nucl Cardiol. 2018; 25: 1204-1236
        • Gullberg G.
        • Aparici C.M.
        • Brooks G.
        • et al.
        Measuring cardiac efficiency using PET/MRI.
        EJNMMI Phys. 2015; 2: A59
        • Varasteh Z.
        • Mohanta S.
        • Robu S.
        • et al.
        Molecular imaging of fibroblast activity after myocardial infarction using a (68)Ga-labeled fibroblast activation protein inhibitor, FAPI-04.
        J Nucl Med. 2019; 60: 1743-1749
        • Kessler L.
        • Kupusovic J.
        • Ferdinandus J.
        • et al.
        Visualization of fibroblast activation after myocardial infarction using 68Ga-FAPI PET.
        Clin Nucl Med. 2021; 46: 807-813
        • Diekmann J.
        • Koenig T.
        • Zwadlo C.
        • et al.
        Molecular imaging identifies fibroblast activation beyond the infarct region after acute myocardial infarction.
        J Am Coll Cardiol. 2021; 77: 1835-1837
      2. Notohamiprodjo S, Nekolla SG, Robu S, Villagran Asiares A, Kupatt C, Ibrahim T, Laugwitz K-L, Makowski MR, Schwaiger M, Weber WA, Varasteh Z. Imaging of cardiac fibroblast activation in a patient after acute myocardial infarction using 68Ga-FAPI-04. J Nucl Cardiol. 2021. doi: 10.1007/s12350-021-02603-z.

      3. Xie B, Wang J, Xi XY, Guo X, Chen BX, Li L, Hua C, Zhao S, Su P, Chen M, Yang MF. Fibroblast activation protein imaging in reperfused ST-elevation myocardial infarction: comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging. 2022. Epub 2022/01/06. doi: 10.1007/s00259-021-05674-9.

        • Ponsiglione A.
        • Ascione R.
        • Nappi C.
        • et al.
        Cardiac hybrid imaging: novel tracers for novel targets.
        J Geriatr Cardiol. 2021; 18: 748-758
        • Silverman K.J.
        • Hutchins G.M.
        • Bulkley B.H.
        Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis.
        Circulation. 1978; 58: 1204-1211
        • Perry A.
        • Vuitch F.
        Causes of death in patients with sarcoidosis. a morphologic study of 38 autopsies with clinicopathologic correlations.
        Arch Pathol Lab Med. 1995; 119: 167-172
        • Swigris J.J.
        • Olson A.L.
        • Huie T.J.
        • et al.
        Sarcoidosis-related mortality in the United States from 1988 to 2007.
        Am J Respir Crit Care Med. 2011; 183: 1524-1530
        • Roberts W.C.
        • McAllister Jr., H.A.
        • Ferrans V.J.
        Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group 1) and review of 78 previously described necropsy patients (group 11).
        Am J Med. 1977; 63: 86-108
        • Yoshinaga K.
        • Miyagawa M.
        • Kiso K.
        • Ishida Y.
        Japanese guidelines for cardiac sarcoidosis.
        Ann Nucl Cardiol. 2017; 3: 121-124
        • Hiraga H.
        • Yuwai K.
        • Hiroe M.
        Diagnostic standard and guidelines for sarcoidosis.
        Jpn J Sarcoidosis Granulomatous Disord. 2007; 27: 89-102
        • Birnie D.H.
        • Sauer W.H.
        • Bogun F.
        • et al.
        HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis.
        Heart Rhythm. 2014; 11: 1305-1323
        • Chareonthaitawee P.
        • Beanlands R.S.
        • Chen W.
        • et al.
        Joint SNMMI-ASNC expert consensus document on the role of (18)F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring.
        J Nucl Cardiol. 2017; 24: 1741-1758
        • Oyama-Manabe N.
        • Manabe O.
        • Aikawa T.
        • Tsuneta S.
        The role of multimodality imaging in cardiac sarcoidosis.
        Korean Circ J. 2021; 51: 561-578
        • Slart R.
        • Glaudemans A.
        • Lancellotti P.
        • et al.
        A joint procedural position statement on imaging in cardiac sarcoidosis: from the cardiovascular and inflammation & infection committees of the European association of nuclear medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology.
        J Nucl Cardiol. 2018; 25: 298-319
        • Nensa F.
        • Bamberg F.
        • Rischpler C.
        • et al.
        Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM).
        Eur Radiol. 2018; 28: 4086-4101
        • Slart R.H.J.A.
        • Glaudemans A.W.J.M.
        • Gheysens O.
        • et al.
        Procedural recommendations of cardiac PET/CT imaging: standardization in inflammatory-, infective-, infiltrative-, and innervation (4Is)-related cardiovascular diseases: a joint collaboration of the EACVI and the EANM.
        Eur J Nucl Med Mol Imaging. 2021; 48: 1016-1039
        • Tonegawa-Kuji R.
        • Oyama-Manabe N.
        • Aoki R.
        • et al.
        T2-weighted short-tau-inversion-recovery imaging reflects disease activity of cardiac sarcoidosis.
        Open Heart. 2021; 8: e001728
        • Slart R.
        • Glaudemans A.
        • Gheysens O.
        • et al.
        Procedural recommendations of cardiac PET/CT imaging: standardization in inflammatory-, infective-, infiltrative-, and innervation- (4Is) related cardiovascular diseases: a joint collaboration of the EACVI and the EANM: summary.
        Eur Heart J Cardiovasc Imaging. 2020; 21: 1320-1330
        • Wicks E.
        • Menezes L.
        • Pantazis A.
        • et al.
        135 novel hybrid positron emission tomography - magnetic resonance (PET-MR) multi-modality inflammatory imaging has improved diagnostic accuracy for detecting cardiac sarcoidosis.
        Heart. 2014; 100: A80
        • Hanneman K.
        • Kadoch M.
        • Guo H.H.
        • et al.
        Initial experience with simultaneous 18F-FDG PET/MRI in the evaluation of cardiac sarcoidosis and myocarditis.
        Clin Nucl Med. 2017; 42: e328-e334
        • Dweck M.R.
        • Abgral R.
        • Trivieri M.G.
        • et al.
        Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis.
        JACC Cardiovasc Imaging. 2018; 11: 94-107
        • Wisenberg G.
        • Thiessen J.D.
        • Pavlovsky W.
        • Butler J.
        • Wilk B.
        • Prato F.S.
        Same day comparison of PET/CT and PET/MR in patients with cardiac sarcoidosis.
        J Nucl Cardiol. 2020; 27: 2118-2129
        • Wicks E.C.
        • Menezes L.J.
        • Barnes A.
        • et al.
        Diagnostic accuracy and prognostic value of simultaneous hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging in cardiac sarcoidosis.
        Eur Heart J - Cardiovasc Imaging. 2018; 19: 757-767
        • Vita T.
        • Okada D.R.
        • Veillet-Chowdhury M.
        • et al.
        Complementary value of cardiac magnetic resonance imaging and positron emission tomography/computed tomography in the assessment of cardiac sarcoidosis.
        Circ Cardiovasc Imaging. 2018; 11: e007030
        • Okune M.
        • Yasuda M.
        • Soejima N.
        • et al.
        Diagnostic utility of fusion (18)F-fluorodeoxyglucose positron emission tomography/cardiac magnetic resonance imaging in cardiac sarcoidosis.
        J Nucl Cardiol. 2020; 29: 753-764
        • Cheung E.
        • Ahmad S.
        • Aitken M.
        • et al.
        Combined simultaneous FDG-PET/MRI with T1 and T2 mapping as an imaging biomarker for the diagnosis and prognosis of suspected cardiac sarcoidosis.
        Eur J hybrid Imaging. 2021; 5: 24
        • Greulich S.
        • Gatidis S.
        • Gräni C.
        • et al.
        Hybrid cardiac magnetic resonance/fluorodeoxyglucose positron emission tomography to differentiate active from chronic cardiac sarcoidosis.
        JACC Cardiovasc Imaging. 2021; 15: 445-456
      4. A joint procedural position statement on imaging in cardiac sarcoidosis: from the cardiovascular and inflammation & infection committees of the european association of nuclear medicine, the european association of cardiovascular imaging, and the american society of nuclear cardiology.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 1073-1089
        • Gutberlet M.
        Cardiac MRI and FDG PET in cardiac sarcoidosis: competitors or collaborators?.
        Radiol Cardiothorac Imaging. 2020; 2: e200347
        • Ferreira V.M.
        • Schulz-Menger J.
        • Holmvang G.
        • et al.
        Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations.
        J Am Coll Cardiol. 2018; 72: 3158-3176
        • Luetkens J.A.
        • Faron A.
        • Isaak A.
        • et al.
        Comparison of original and 2018 Lake Louise criteria for diagnosis of acute myocarditis: results of a validation cohort.
        Radiol Cardiothorac Imaging. 2019; 1: e190010
        • Lurz P.
        • Luecke C.
        • Eitel I.
        • et al.
        Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the MyoRacer-trial.
        J Am Coll Cardiol. 2016; 67: 1800-1811
        • Hinojar R.
        • Foote L.
        • Arroyo Ucar E.
        • et al.
        Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR.
        JACC Cardiovasc Imaging. 2015; 8: 37-46
        • Messroghli D.R.
        • Moon J.C.
        • Ferreira V.M.
        • et al.
        Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2∗ and extracellular volume: a consensus statement by the society for cardiovascular magnetic resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI).
        J Cardiovasc Magn Reson. 2017; 19: 75
        • Nensa F.
        • Kloth J.
        • Tezgah E.
        • et al.
        Feasibility of FDG-PET in myocarditis: comparison to CMR using integrated PET/MRI.
        J Nucl Cardiol. 2018; 25: 785-794
        • Chen W.
        • Jeudy J.
        Assessment of myocarditis: cardiac MR, PET/CT, or PET/MR?.
        Curr Cardiol Rep. 2019; 21: 76
        • Hanneman K.
        • Houbois C.
        • Schoffel A.
        • et al.
        Combined cardiac fluorodeoxyglucose–positron emission tomography/magnetic resonance imaging assessment of myocardial injury in patients who recently recovered from COVID-19.
        JAMA Cardiol. 2022; 7: 298-308
        • Masuda A.
        • Naya M.
        • Manabe O.
        • et al.
        Administration of unfractionated heparin with prolonged fasting could reduce physiological 18F-fluorodeoxyglucose uptake in the heart.
        Acta Radiol. 2016; 57: 661-668
        • Osborne M.T.
        • Hulten E.A.
        • Murthy V.L.
        • et al.
        Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation.
        J Nucl Cardiol. 2017; 24: 86-99
        • Slart R.H.J.A.
        • Koopmans K.-P.
        • van Geel P.P.
        • et al.
        Somatostatin receptor based hybrid imaging in sarcoidosis.
        Eur J Hybrid Imaging. 2017; 1: 7
        • Saric P.
        • Young K.A.
        • Rodriguez-Porcel M.
        • Chareonthaitawee P.
        PET imaging in cardiac sarcoidosis: a narrative review with focus on novel PET tracers.
        Pharmaceuticals (Basel). 2021; 14
      5. Park J, Young BD, Miller EJ. Potential novel imaging targets of inflammation in cardiac sarcoidosis. J Nucl Cardiol. 2021. Epub 2021/11/05. doi: 10.1007/s12350-021-02838-w.

        • Imperiale A.
        • Poindron V.
        • Martinez M.
        • Ohlmann P.
        • Schindler T.H.
        • El Ghannudi S.
        68Ga-DOTATOC PET for treatment efficacy evaluation of cardiac sarcoidosis.
        Clin Nucl Med. 2020; 45: e416-e418
        • Gormsen L.C.
        • Haraldsen A.
        • Kramer S.
        • Dias A.H.
        • Kim W.Y.
        • Borghammer P.
        A dual tracer (68)Ga-DOTANOC PET/CT and (18)F-FDG PET/CT pilot study for detection of cardiac sarcoidosis.
        EJNMMI Res. 2016; 6: 52
        • Kaushik P.
        • Patel C.
        • Gulati G.S.
        • et al.
        Comparison of (68)Ga-DOTANOC PET/CT with cardiac MRI in patients with clinical suspicion of cardiac sarcoidosis.
        Ann Nucl Med. 2021; 35: 1058-1065
        • Tarkin J.M.
        • Joshi F.R.
        • Evans N.R.
        • et al.
        Detection of atherosclerotic inflammation by (68)Ga-DOTATATE PET compared to [(18)F]FDG PET imaging.
        J Am Coll Cardiol. 2017; 69: 1774-1791
        • Ćorović A.
        • Wall C.
        • Mason J.C.
        • Rudd J.H.F.
        • Tarkin J.M.
        Novel positron emission tomography tracers for imaging vascular inflammation.
        Curr Cardiol Rep. 2020; 22: 119
        • Martineau P.
        • Pelletier-Galarneau M.
        • Juneau D.
        • et al.
        FLT-PET for the assessment of systemic sarcoidosis including cardiac and CNS involvement: a prospective study with comparison to FDG-PET.
        EJNMMI Res. 2020; 10: 154
        • Hyafil F.
        • Pelisek J.
        • Laitinen I.
        • et al.
        Imaging the cytokine receptor CXCR4 in atherosclerotic plaques with the radiotracer (68)Ga-pentixafor for PET.
        J Nucl Med. 2017; 58: 499-506
        • Rischpler C.
        • Nekolla S.G.
        • Kossmann H.
        • et al.
        Upregulated myocardial CXCR4-expression after myocardial infarction assessed by simultaneous GA-68 pentixafor PET/MRI.
        J Nucl Cardiol. 2016; 23: 131-133
        • Reiter T.
        • Kircher M.
        • Schirbel A.
        • et al.
        Imaging of C-X-C motif chemokine receptor CXCR4 expression after myocardial infarction with [(68)Ga]Pentixafor-PET/CT in correlation with cardiac MRI.
        JACC Cardiovasc Imaging. 2018; 11: 1541-1543
        • Heo G.S.
        • Kopecky B.
        • Sultan D.
        • et al.
        Molecular imaging visualizes recruitment of inflammatory monocytes and macrophages to the injured heart.
        Circ Res. 2019; 124: 881-890
        • Dorbala S.
        • Ando Y.
        • Bokhari S.
        • et al.
        ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2—evidence base and standardized methods of imaging.
        J Nucl Cardiol. 2019; 26: 2065-2123
        • Fontana M.
        • Pica S.
        • Reant P.
        • et al.
        Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis.
        Circulation. 2015; 132: 1570-1579
        • Trivieri M.G.
        • Dweck M.R.
        • Abgral R.
        • et al.
        18)F-Sodium fluoride PET/MR for the assessment of cardiac amyloidosis.
        J Am Coll Cardiol. 2016; 68: 2712-2714
        • Abulizi M.
        • Sifaoui I.
        • Wuliya-Gariepy M.
        • et al.
        18)F-sodium fluoride PET/MRI myocardial imaging in patients with suspected cardiac amyloidosis.
        J Nucl Cardiol. 2021; 28: 1586-1595
        • Andrews J.P.M.
        • Trivieri M.G.
        • Everett R.
        • et al.
        18F-fluoride PET/MR in cardiac amyloid: a comparison study with aortic stenosis and age- and sex-matched controls.
        J Nucl Cardiol. 2020; 29: 741-749
        • Cuddy S.A.M.
        Editorial: 18F-Fluoride PET/MR in cardiac amyloid; simple addition versus synergy?.
        J Nucl Cardiol. 2020; 29: 750-752
        • Antoni G.
        • Lubberink M.
        • Estrada S.
        • et al.
        In Vivo visualization of amyloid deposits in the heart with 11C-PIB and PET.
        J Nucl Med. 2013; 54: 213-220
        • Dorbala S.
        • Vangala D.
        • Semer J.
        • et al.
        Imaging cardiac amyloidosis: a pilot study using 1⁸F-florbetapir positron emission tomography.
        Eur J Nucl Med Mol Imaging. 2014; 41: 1652-1662
        • Genovesi D.
        • Vergaro G.
        • Giorgetti A.
        • et al.
        [18F]-florbetaben PET/CT for differential diagnosis among cardiac immunoglobulin light chain, transthyretin amyloidosis, and mimicking conditions.
        JACC Cardiovasc Imaging. 2020; 14: 246-255
        • Sperry B.W.
        • Bock A.
        • DiFilippo F.P.
        • Donnelly J.P.
        • Hanna M.
        • Jaber W.A.
        Pilot study of F18-florbetapir in the early evaluation of cardiac amyloidosis.
        Front Cardiovasc Med. 2021; 8: 693194
        • Cuddy S.A.M.
        • Bravo P.E.
        • Falk R.H.
        • et al.
        Improved quantification of cardiac amyloid burden in systemic light chain amyloidosis: redefining early disease?.
        JACC Cardiovasc Imaging. 2020; 13: 1325-1336
        • Lee S.P.
        • Lee E.S.
        • Choi H.
        • et al.
        11C-Pittsburgh B PET imaging in cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2015; 8: 50-59
        • Rosengren S.
        • Skibsted Clemmensen T.
        • Tolbod L.
        • et al.
        Diagnostic accuracy of [(11)C]PIB positron emission tomography for detection of cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2020; 13: 1337-1347
        • Papathanasiou M.
        • Kessler L.
        • Carpinteiro A.
        • et al.
        18F-flutemetamol positron emission tomography in cardiac amyloidosis.
        J Nucl Cardiol. 2020; 29: 779-789
        • Gallegos C.
        • Miller E.J.
        Advances in PET-based cardiac amyloid radiotracers.
        Curr Cardiol Rep. 2020; 22: 40
        • Wu Z.
        • Yu C.
        Diagnostic performance of CMR, SPECT, and PET imaging for the detection of cardiac amyloidosis: a meta-analysis.
        BMC Cardiovasc Disord. 2021; 21: 482
        • Singh V.
        • Dorbala S.
        Positron emission tomography for cardiac amyloidosis: timing matters!.
        J Nucl Cardiol. 2021; 29: 790-797
        • Nappi C.
        • Altiero M.
        • Imbriaco M.
        • et al.
        First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease.
        Eur J Nucl Med Mol Imaging. 2015; 42: 1025-1031
        • Nappi C.
        • Ponsiglione A.
        • Pisani A.
        • et al.
        Role of serial cardiac (18)F-FDG PET-MRI in Anderson-Fabry disease: a pilot study.
        Insights Imaging. 2021; 12: 124
        • Aoyama R.
        • Takano H.
        • Kobayashi Y.
        • et al.
        Evaluation of myocardial glucose metabolism in hypertrophic cardiomyopathy using 18F-fluorodeoxyglucose positron emission tomography.
        PLoS One. 2017; 12: e0188479
        • Kong E.J.
        • Lee S.H.
        • Cho I.H.
        Myocardial fibrosis in hypertrophic cardiomyopathy demonstrated by integrated cardiac F-18 FDG PET/MR.
        Nucl Med Mol Imaging. 2013; 47: 196-200
        • Takeishi Y.
        • Masuda A.
        • Kubo H.
        • Tominaga H.
        • Oriuchi N.
        • Takenoshita S.
        Cardiac imaging with 18F-fluorodeoxyglucose PET/MRI in hypertrophic cardiomyopathy.
        J Nucl Cardiol. 2017; 24: 1827-1828
        • Manabe O.
        • Oyama-Manabe N.
        • Tamaki N.
        Positron emission tomography/MRI for cardiac diseases assessment.
        Br J Radiol. 2020; 93: 20190836
        • Krumm P.
        • Mangold S.
        • Gatidis S.
        • et al.
        Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications.
        Jpn J Radiol. 2018; 36: 313-323
        • Kelly J.M.
        • Babich J.W.
        PET tracers for imaging cardiac function in cardio-oncology.
        Curr Cardiol Rep. 2022; 24: 247-260
        • Heckmann M.B.
        • Reinhardt F.
        • Finke D.
        • et al.
        Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease.
        Circ Cardiovasc Imaging. 2020; 13: e010628
        • Löffler A.I.
        • Salerno M.
        Cardiac MRI for the evaluation of oncologic cardiotoxicity.
        J Nucl Cardiol. 2018; 25: 2148-2158
        • Burrage M.K.
        • Ferreira V.M.
        The use of cardiovascular magnetic resonance as an early non-invasive biomarker for cardiotoxicity in cardio-oncology.
        Cardiovasc Diagn Ther. 2020; 10: 610-624
        • Saunderson C.E.D.
        • Plein S.
        • Manisty C.H.
        Role of cardiovascular magnetic resonance imaging in cardio-oncology.
        Eur Heart J - Cardiovasc Imaging. 2021; 22: 383-396
      6. Aghayev A, Cheezum MK, Steigner ML, Mousavi N, Padera R, Barac A, Kwong RY, Di Carli MF, Blankstein R. Multimodality imaging to distinguish between benign and malignant cardiac masses. J Nucl Cardiol. 2021. Epub 2021/09/04. doi: 10.1007/s12350-021-02790-9.

        • Nensa F.
        • Tezgah E.
        • Poeppel T.D.
        • et al.
        Integrated 18F-FDG PET/MR imaging in the assessment of cardiac masses: a pilot study.
        J Nucl Med. 2015; 56: 255-260
        • Yaddanapudi K.
        • Brunken R.
        • Tan C.D.
        • Rodriguez E.R.
        • Bolen M.A.
        PET-MR imaging in evaluation of cardiac and paracardiac masses with histopathologic correlation.
        JACC Cardiovasc Imaging. 2016; 9: 82-85
      7. Yaddanapudi K, Brunken R, Tan CD, Rodriguez ER, Bolen MA. PET-MR Imaging in Evaluation of Cardiac and Paracardiac Masses With Histopathologic Correlation. JACC Cardiovasc Imaging. 2016;9(1):82-5. doi: https://doi.org/10.1016/j.jcmg.2015.04.028.

        • Yap M.L.
        • Peter K.
        Molecular positron emission tomography in cardiac ischemia/reperfusion.
        Circ Res. 2019; 124: 827-829