Advertisement
Advances in Clinical Radiology

Accelerating Abdominopelvic Imaging

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Runge V.M.
        • Price A.C.
        • Kirshner H.S.
        • et al.
        Magnetic-resonance imaging of multiple-sclerosis - a study of pulse-technique efficacy.
        AJR Am J Roentgenol. 1984; 143: 1015-1026
        • Frahm J.
        • Haase A.
        • Matthaei D.
        Rapid NMR imaging of dynamic processes using the FLASH technique.
        Magn Reson Med. 1986; 3: 321-327
        • Hennig J.
        • Nauerth A.
        • Friedburg H.
        RARE imaging: a fast imaging method for clinical MR.
        Magn Reson Med. 1986; 3: 823-833
        • Mansfield P.
        Real-time echo-planar imaging by NMR.
        Br Med Bull. 1984; 40: 187-190
        • Griswold M.A.
        • Jakob P.M.
        • Heidemann R.M.
        • et al.
        Generalized autocalibrating partially parallel acquisitions (GRAPPA).
        Magn Reson Med. 2002; 47: 1202-1210
        • Maciejewski M.W.
        • Mobli M.
        • Schuyler A.D.
        • et al.
        Data Sampling in Multidimensional NMR: Fundamentals and Strategies.
        in: Billeter M. Orekhov V. Novel sampling approaches in higher dimensional NMR. Springer, Cham, Switzerland2012: 49-77
        • Sodickson D.K.
        • Manning W.J.
        Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays.
        Magn Reson Med. 1997; 38: 591-603
        • Pruessmann K.P.
        • Weiger M.
        • Scheidegger M.B.
        • et al.
        Sensitivity encoding for fast MRI.
        Magn Reson Med. 1999; 42: 952-962
        • Runge V.M.
        • Richter J.K.
        • Heverhagen J.T.
        Speed in Clinical Magnetic Resonance.
        Invest Radiol. 2017; 52: 1-17
        • Riffel P.
        • Attenberger U.I.
        • Kannengiesser S.
        • et al.
        Highly Accelerated T1-Weighted Abdominal Imaging Using 2-Dimensional Controlled Aliasing in Parallel Imaging Results in Higher Acceleration A Comparison With Generalized Autocalibrating Partially Parallel Acquisitions Parallel Imaging.
        Invest Radiol. 2013; 48: 554-561
        • Breuer F.A.
        • Blaimer M.
        • Mueller M.F.
        • et al.
        Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA).
        Magn Reson Med. 2006; 55: 549-556
        • Deshmane A.
        • Gulani V.
        • Griswold M.A.
        • et al.
        Parallel MR imaging.
        J Magn Reson Imaging. 2012; 36: 55-72
        • Barth M.
        • Breuer F.
        • Koopmans P.J.
        • et al.
        Simultaneous Multislice (SMS) Imaging Techniques.
        Magn Reson Med. 2016; 75: 63-81
        • Hargreaves B.A.
        • Cunningham C.H.
        • Nishimura D.G.
        • et al.
        Variable-rate selective excitation for rapid MRI sequences.
        Magn Reson Med. 2004; 52: 590-597
        • Donoho D.L.
        Compressed sensing.
        IEEE Trans Inf Theor. 2006; 52: 1289-1306
        • Lustig M.
        • Donoho D.L.
        • Santos J.M.
        • et al.
        Compressed Sensing MRI.
        IEEE Signal Process Mag. 2008; 25: 72-82
        • Feng L.
        • Benkert T.
        • Block K.T.
        • et al.
        Compressed sensing for body MRI.
        J Magn Reson Imaging. 2017; 45: 966-987
        • Lustig M.
        • Donoho D.
        • Pauly J.M.
        Sparse MRI: The application of compressed sensing for rapid MR imaging.
        Magn Reson Med. 2007; 58: 1182-1195
        • Krahmer F.
        • Ward R.
        Stable and Robust Sampling Strategies for Compressive Imaging.
        IEEE Trans Image Process. 2014; 23: 612-622
        • Block K.T.
        • Uecker M.
        • Frahm J.
        Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint.
        Magn Reson Med. 2007; 57: 1086-1098
        • Feng L.
        • Grimm R.
        • Block K.T.
        • et al.
        Golden-Angle Radial Sparse Parallel MRI: Combination of Compressed Sensing, Parallel Imaging, and Golden-Angle Radial Sampling for Fast and Flexible Dynamic Volumetric MRI.
        Magn Reson Med. 2014; 72: 707-717
        • Glover G.H.
        • Pauly J.M.
        Projection reconstruction techniques for reduction of motion effects in MRI.
        Magn Reson Med. 1992; 28: 275-289
        • Smith D.S.
        • Gore J.C.
        • Yankeelov T.E.
        • et al.
        Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods.
        Int J Biomed Imaging. 2012; 2012https://doi.org/10.1155/2012/864827
      1. Vasanawala SS, Murphy MJ, Alley MT, et al. Practical parallel imaging compressed sensing MRI: summary of two years of experience in accelerating body MRI of pediatric patients. 2011:1039-1043.

        • Hansen M.S.
        • Sorensen T.S.
        Gadgetron: An open source framework for medical image reconstruction.
        Magn Reson Med. 2013; 69: 1768-1776
        • Tsao J.
        • Kozerke S.
        MRI temporal acceleration techniques.
        J Magnet Reson Imaging. 2012; 36: 543-560
        • Riederer S.J.
        • Tasciyan T.
        • Farzaneh F.
        • et al.
        MR FLUOROSCOPY - TECHNICAL FEASIBILITY.
        Magn Reson Med. 1988; 8: 1-15
        • Vanvaals J.J.
        • Brummer M.E.
        • Dixon W.T.
        • et al.
        Keyhole method for accelerating imaging of contrast agent uptake.
        J Magnet Reson Imaging. 1993; 3: 671-675
        • Jones R.A.
        • Haraldseth O.
        • Muller T.B.
        • et al.
        K-space substitution - a novel dynamic imaging technique.
        Magn Reson Med. 1993; 29: 830-834
        • Hu X.P.
        • Parrish T.
        Reduction of field-of-view for dynamic imaging.
        Magn Reson Med. 1994; 31: 691-694
        • Parrish T.
        • Hu X.P.
        Continuous update with random encoding (cure) - a new strategy for dynamic imaging.
        Magn Reson Med. 1995; 33: 326-336
        • Winkelmann S.
        • Schaeffter T.
        • Koehler T.
        • et al.
        An optimal radial profile order based on the golden ratio for time-resolved MRI.
        IEEE Trans Med Imaging. 2007; 26: 68-76
        • Doyle M.
        • Walsh E.G.
        • Blackwell G.G.
        • et al.
        Block regional interpolation scheme for K-space (BRISK) - a rapid cardiac imaging technique.
        Magn Reson Med. 1995; 33: 163-170
        • Korosec F.R.
        • Frayne R.
        • Grist T.M.
        • et al.
        Time-resolved contrast-enhanced 3D MR angiography.
        MAGNETIC RESONANCE IN MEDICINE. 1996; 36: 345-351
        • Peters D.C.
        • Korosec F.R.
        • Grist T.M.
        • et al.
        Undersampled projection reconstruction applied to MR angiography.
        Magn Reson Med. 2000; 43: 91-101
        • Barger A.V.
        • Block W.F.
        • Toropov Y.
        • et al.
        Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory.
        Magn Reson Med. 2002; 48: 297-305
        • Hope T.A.
        • Saranathan M.
        • Petkovska I.
        • et al.
        Improvement of Gadoxetate Arterial Phase Capture With a High Spatio-Temporal Resolution Multiphase Three-Dimensional SPGR-Dixon Sequence.
        J Magn Reson Imaging. 2013; 38: 938-945
      2. Wang SS, Su ZH, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. Presented at: 2016 IEEE 13TH International Symposium on Biomedical Imaging (ISBI); 2016; Prague, Czech Republic.

        • Chen F.
        • Taviani V.
        • Malkiel I.
        • et al.
        Variable-Density Single-Shot Fast Spin-Echo MRI with Deep Learning Reconstruction by Using Variational Networks.
        Radiology. 2018; 289: 366-373
        • Knoll F.
        • Hammernik K.
        • Kobler E.
        • et al.
        Assessment of the generalization of learned image reconstruction and the potential for transfer learning.
        Magn Reson Med. 2019; 81: 116-128
        • Eo T.
        • Jun Y.
        • Kim T.
        • et al.
        KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
        Magn Reson Med. 2018; 80: 2188-2201
        • Johnson P.M.
        • Tong A.
        • Donthireddy A.
        • et al.
        Deep Learning Reconstruction Enables Highly Accelerated Biparametric MR Imaging of the Prostate.
        J Magn Reson Imaging. 2021; https://doi.org/10.1002/jmri.28024
        • Shanbhogue K.
        • Tong A.
        • Smereka P.
        • et al.
        Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence.
        Eur Radiol. 2021; 31: 8447-8457
        • Hammernik K.
        • Klatzer T.
        • Kobler E.
        • et al.
        Learning a variational network for reconstruction of accelerated MRI data.
        Magn Reson Med. 2018; 79: 3055-3071
        • Schlemper J.
        • Caballero J.
        • Hajnal J.V.
        • et al.
        A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction.
        IEEE Trans Med Imaging. 2018; 37: 491-503
        • Nam J.G.
        • Lee J.M.
        • Lee S.M.
        • et al.
        High Acceleration Three-Dimensional T1-Weighted Dual Echo Dixon Hepatobiliary Phase Imaging Using Compressed Sensing-Sensitivity Encoding: Comparison of Image Quality and Solid Lesion Detectability with the Standard T1-Weighted Sequence.
        Korean J Radiol. 2019; 20https://doi.org/10.3348/kjr.2018.0310
        • Yoon J.H.
        • Nickel M.D.
        • Peeters J.M.
        • et al.
        Rapid Imaging: Recent Advances in Abdominal MRI for Reducing Acquisition Time and Its Clinical Applications.
        Korean J Radiol. 2019; 20: 1597-1615
        • Schmiedeskamp H.
        • Newbould R.D.
        • Pisani L.J.
        • et al.
        Improvements in Parallel Imaging Accelerated Functional MRI Using Multiecho Echo-Planar Imaging.
        Magn Reson Med. 2010; 63: 959-969
        • Obele C.C.
        • Glielmi C.
        • Ream J.
        • et al.
        Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T.
        Abdom Imaging. 2015; 40: 2323-2330
        • Del Grande F.
        • Rashidi A.
        • Luna R.
        • et al.
        Five-minute Five-Sequence Knee MRI Using Combined Simultaneous Multislice and Parallel Imaging Acceleration: Comparison with 10-minute Parallel Imaging Knee MRI.
        Radiology. 2021; 299: 635-646
        • Benali S.
        • Johnston P.R.
        • Gholipour A.
        • et al.
        Simultaneous multi-slice accelerated turbo spin echo of the knee in pediatric patients.
        Skeletal Radiol. 2018; 47: 821-831
        • Chandarana H.
        • Doshi A.M.
        • Shanbhogue A.
        • et al.
        Three-dimensional MR Cholangiopancreatography in a Breath Hold with Sparsity-based Reconstruction of Highly Undersampled Data.
        Radiology. 2016; 280: 585-594
        • Zhang T.
        • Cheng J.Y.
        • Potnick A.G.
        • et al.
        Fast Pediatric 3D Free-Breathing Abdominal Dynamic Contrast Enhanced MRI With High Spatiotemporal Resolution.
        J Magn Reson Imaging. 2015; 41: 460-473
        • Chernyak V.
        • Fowler K.J.
        • Kamaya A.
        • et al.
        Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients.
        Radiology. 2018; 289: 816-830
        • Turkbey B.
        • Rosenkrantz A.B.
        • Haider M.A.
        • et al.
        Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2.
        Eur Urol. 2019; 76: 340-351
        • Thomassin-Naggara I.
        • Poncelet E.
        • Jalaguier-Coudray A.
        • et al.
        Ovarian-Adnexal Reporting Data System Magnetic Resonance Imaging (O-RADS MRI) Score for Risk Stratification of Sonographically Indeterminate Adnexal Masses.
        JAMA Netw Open. 2020; 3: e1919896
        • Michaely H.J.
        • Morelli J.N.
        • Budjan J.
        • et al.
        CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE): a new technique for fast time-resolved dynamic 3-dimensional imaging of the abdomen with high spatial resolution.
        Invest Radiol. 2013; 48: 590-597
        • Davenport M.S.
        • Malyarenko D.I.
        • Pang Y.
        • et al.
        Effect of Gadoxetate Disodium on Arterial Phase Respiratory Waveforms Using a Quantitative Fast Fourier Transformation-Based Analysis.
        AJR Am J Roentgenol. 2017; 208: 328-336
        • Davenport M.S.
        • Viglianti B.L.
        • Al-Hawary M.M.
        • et al.
        Comparison of Acute Transient Dyspnea after Intravenous Administration of Gadoxetate Disodium and Gadobenate Dimeglumine: Effect on Arterial Phase Image Quality.
        Radiology. 2013; 266: 452-461
        • Gruber L.
        • Rainer V.
        • Plaikner M.
        • et al.
        CAIPIRINHA-Dixon-TWIST (CDT)-VIBE MR imaging of the liver at 3.0T with gadoxetate disodium: a solution for transient arterial-phase respiratory motion-related artifacts?.
        Eur Radiol. 2018; 28: 2013-2021
        • Hong S.B.
        • Lee N.K.
        • Kim S.
        • et al.
        Modified CAIPIRINHA-VIBE without view-sharing on gadoxetic acid-enhanced multi-arterial phase MR imaging for diagnosing hepatocellular carcinoma: comparison with the CAIPIRINHA-Dixon-TWIST-VIBE.
        Eur Radiol. 2019; 29: 3574-3583
        • Budjan J.
        • Ong M.
        • Riffel P.
        • et al.
        CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE) for dynamic liver imaging: comparison of gadoterate meglumine, gadobutrol and gadoxetic acid.
        Eur J Radiol. 2014; 83: 2007-2012
        • Ichikawa S.
        • Motosugi U.
        • Oishi N.
        • et al.
        Ring-Like Enhancement of Hepatocellular Carcinoma in Gadoxetic Acid-Enhanced Multiphasic Hepatic Arterial Phase Imaging With Differential Subsampling With Cartesian Ordering.
        Invest Radiol. 2018; 53: 191-199
        • Kaltenbach B.
        • Bucher A.M.
        • Wichmann J.L.
        • et al.
        Dynamic Liver Magnetic Resonance Imaging in Free-Breathing Feasibility of a Cartesian T1-Weighted Acquisition Technique With Compressed Sensing and Additional Self-Navigation Signal for Hard-Gated and Motion-Resolved Reconstruction.
        Invest Radiol. 2017; 52: 708-714
        • Chandarana H.
        • Feng L.
        • Block T.K.
        • et al.
        Free-Breathing Contrast-Enhanced Multiphase MRI of the Liver Using a Combination of Compressed Sensing, Parallel Imaging, and Golden-Angle Radial Sampling.
        Invest Radiol. 2013; 48: 10-16
        • Gassenmaier S.
        • Afat S.
        • Nickel D.
        • et al.
        Deep learning-accelerated T2-weighted imaging of the prostate: Reduction of acquisition time and improvement of image quality.
        Eur J Radiol. 2021; : 137doi
        • Jung W.
        • Kim E.H.
        • Ko J.
        • et al.
        Convolutional neural network-based reconstruction for acceleration of prostate T2 weighted MR imaging: a retro- and prospective study.
        Br J Radiol. 2022; : 20211378https://doi.org/10.1259/bjr.20211378
        • Kim E.H.
        • Choi M.H.
        • Lee Y.J.
        • et al.
        Deep learning-accelerated T2-weighted imaging of the prostate: Impact of further acceleration with lower spatial resolution on image quality.
        Eur J Radiol. 2021; 145: 110012
        • Ueda T.
        • Ohno Y.
        • Yamamoto K.
        • et al.
        Compressed sensing and deep learning reconstruction for women's pelvic MRI denoising: Utility for improving image quality and examination time in routine clinical practice.
        Eur J Radiol. 2021; 134https://doi.org/10.1016/j.ejrad.2020.109430