Advertisement
Review Article| Volume 2, P257-271, September 2020

Compressed Sensing MRI

Technique and Clinical Applications
      MRI is one of the most important imaging modalities for a variety of clinical applications, but long scans times increase costs and limit availability.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jaspan O.N.
        • Fleysher R.
        • Lipton M.L.
        Compressed sensing MRI: a review of the clinical literature.
        Br J Radiol. 2015; 88: 20150487
        • Cohen M.S.
        • Weisskoff R.M.
        Ultra-fast imaging.
        Magn Reson Imaging. 1991; 9: 1-37
        • Hsiao A.
        • Lustig M.
        • Alley M.T.
        • et al.
        Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI.
        AJR Am J Roentgenol. 2012; 198: W250-W259
        • Vasanawala S.S.
        • Alley M.T.
        • Hargreaves B.A.
        • et al.
        Improved pediatric MR imaging with compressed sensing.
        Radiology. 2010; 256: 607-616
        • Jung J.Y.
        • Yoon Y.C.
        • Kim H.R.
        • et al.
        Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging.
        Radiology. 2013; 268: 802-813
        • Lustig M.
        • Pauly J.M.
        SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space.
        Magn Reson Med. 2010; 64: 457-471
        • Pruessmann K.P.
        • Weiger M.
        • Scheidegger M.B.
        • et al.
        SENSE: sensitivity encoding for fast MRI.
        Magn Reson Med. 1999; 42: 952-962
        • Hollingsworth K.G.
        Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction.
        Phys Med Biol. 2015; 60: R297-R322
        • Lustig M.
        • Donoho D.
        • Pauly J.M.
        Sparse MRI: the application of compressed sensing for rapid MR imaging.
        Magn Reson Med. 2007; 58: 1182-1195
        • Geethanath S.
        • Reddy R.
        • Konar A.S.
        • et al.
        Compressed sensing MRI: a review.
        Crit Rev Biomed Eng. 2013; 41: 183-204
        • Candès E.R.
        • Romberg J.
        • Tao T.
        Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information.
        IEEE Trans Inf Theory. 2006; 52: 489-509
        • Lustig M.D.
        • Donoho D.L.
        • Santos J.M.
        • et al.
        Compressed sensing MRI.
        IEEE Signal Process Mag. 2008; 25: 72-82
        • Chan R.W.
        • Ramsay E.A.
        • Cheung E.Y.
        • et al.
        The influence of radial undersampling schemes on compressed sensing reconstruction in breast MRI.
        Magn Reson Med. 2012; 67: 363-377
        • Tsao J.
        • Kozerke S.
        MRI temporal acceleration techniques.
        J Magn Reson Imaging. 2012; 36: 543-560
        • Zhu Y.H.
        • Guo Y.
        • Lingala S.G.
        • et al.
        GOCART: GOlden-angle CArtesian randomized time-resolved 3D MRI.
        Magn Reson Imaging. 2016; 34: 940-950
        • Sagawa H.
        • Kataoka M.
        • Kanao S.
        • et al.
        Impact of the number of iterations in compressed sensing reconstruction on ultrafast dynamic contrast-enhanced breast MR imaging.
        Magn Reson Med Sci. 2019; 18: 200-207
        • Wang H.
        • Miao Y.
        • Zhou K.
        • et al.
        Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory.
        Med Phys. 2010; 37: 4971-4981
        • Hargreaves B.A.
        • Saranathan M.
        • Sung K.
        • et al.
        Accelerated breast MRI with compressed sensing.
        Eur J Radiol. 2012; 81: S54-S55
        • Kim S.G.
        • Feng L.
        • Grimm R.
        • et al.
        Influence of temporal regularization and radial undersampling factor on compressed sensing reconstruction in dynamic contrast enhanced MRI of the breast.
        J Magn Reson Imaging. 2016; 43: 261-269
        • Benkert T.
        • Block K.T.
        • Heller S.
        • et al.
        Comprehensive dynamic contrast-enhanced 3D magnetic resonance imaging of the breast with fat/water separation and high spatiotemporal resolution using radial sampling, compressed sensing, and parallel imaging.
        Invest Radiol. 2017; 52: 583-589
        • Heacock L.
        • Gao Y.
        • Heller S.L.
        • et al.
        Comparison of conventional DCE-MRI and a novel golden-angle radial multicoil compressed sensing method for the evaluation of breast lesion conspicuity.
        J Magn Reson Imaging. 2017; 45: 1746-1752
        • Vreemann S.
        • Rodriguez-Ruiz A.
        • Nickel D.
        • et al.
        Compressed sensing for breast MRI: resolving the trade-off between spatial and temporal resolution.
        Invest Radiol. 2017; 52: 574-582
        • Onishi N.
        • Kataoka M.
        • Kanao S.
        • et al.
        Ultrafast dynamic contrast-enhanced MRI of the breast using compressed sensing: breast cancer diagnosis based on separate visualization of breast arteries and veins.
        J Magn Reson Imaging. 2018; 47: 97-104
        • Honda M.
        • Kataoka M.
        • Onishi N.
        • et al.
        New parameters of ultrafast dynamic contrast-enhanced breast MRI using compressed sensing.
        J Magn Reson Imaging. 2020; 51: 164-174
        • Lebel R.M.
        • Jones J.
        • Ferre J.C.
        • et al.
        Highly accelerated dynamic contrast enhanced imaging.
        Magn Reson Med. 2014; 71: 635-644
        • Guo Y.
        • Lebel R.M.
        • Zhu Y.
        • et al.
        High-resolution whole-brain DCE-MRI using constrained reconstruction: prospective clinical evaluation in brain tumor patients.
        Med Phys. 2016; 43: 2013
        • Otazo R.
        • Kim D.
        • Axel L.
        • et al.
        Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI.
        Magn Reson Med. 2010; 64: 767-776
        • Akcakaya M.
        • Rayatzadeh H.
        • Basha T.A.
        • et al.
        Accelerated late gadolinium enhancement cardiac MR imaging with isotropic spatial resolution using compressed sensing: initial experience.
        Radiology. 2012; 264: 691-699
        • Haji-Valizadeh H.
        • Rahsepar A.A.
        • Collins J.D.
        • et al.
        Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5T and 3T.
        Magn Reson Med. 2018; 79: 2745-2751
        • Liang D.
        • DiBella E.V.
        • Chen R.R.
        • et al.
        k-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection.
        Magn Reson Med. 2012; 68: 41-53
        • Usman M.
        • Atkinson D.
        • Odille F.
        • et al.
        Motion corrected compressed sensing for free-breathing dynamic cardiac MRI.
        Magn Reson Med. 2013; 70: 504-516
        • Wang Y.
        • Ying L.
        Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary.
        IEEE Trans Biomed Eng. 2014; 61: 1109-1120
        • Wech T.
        • Pickl W.
        • Tran-Gia J.
        • et al.
        Whole-heart cine MRI in a single breath-hold--a compressed sensing accelerated 3D acquisition technique for assessment of cardiac function.
        Rofo. 2014; 186: 37-41
        • Tolouee A.
        • Alirezaie J.
        • Babyn P.
        Nonrigid motion compensation in compressed sensing reconstruction of cardiac cine MRI.
        Magn Reson Imaging. 2018; 46: 114-120
        • Tolouee A.
        • Alirezaie J.
        • Babyn P.
        Compressed sensing reconstruction of cardiac cine MRI using golden angle spiral trajectories.
        J Magn Reson. 2015; 260: 10-19
        • Yoon H.
        • Kim K.S.
        • Kim D.
        • et al.
        Motion adaptive patch-based low-rank approach for compressed sensing cardiac cine MRI.
        IEEE Trans Med Imaging. 2014; 33: 2069-2085
        • Huang J.
        • Wang L.
        • Chu C.
        • et al.
        Cardiac diffusion tensor imaging based on compressed sensing using joint sparsity and low-rank approximation.
        Technol Health Care. 2016; 24: S593-S599
        • Royuela-del-Val J.
        • Cordero-Grande L.
        • Simmross-Wattenberg F.
        • et al.
        Nonrigid groupwise registration for motion estimation and compensation in compressed sensing reconstruction of breath-hold cardiac cine MRI.
        Magn Reson Med. 2016; 75: 1525-1536
        • Zhang X.
        • Xie G.
        • Shi C.
        • et al.
        Accelerating PS model-based dynamic cardiac MRI using compressed sensing.
        Magn Reson Imaging. 2016; 34: 81-90
        • Ma J.
        • Marz M.
        • Funk S.
        • et al.
        Shearlet-based compressed sensing for fast 3D cardiac MR imaging using iterative reweighting.
        Phys Med Biol. 2018; 63: 235004
        • Zhang X.
        • Xie G.
        • Lu N.
        • et al.
        3D self-gated cardiac cine imaging at 3 Tesla using stack-of-stars bSSFP with tiny golden angles and compressed sensing.
        Magn Reson Med. 2019; 81: 3234-3244
        • Godino-Moya A.
        • Royuela-Del-Val J.
        • Usman M.
        • et al.
        Space-time variant weighted regularization in compressed sensing cardiac cine MRI.
        Magn Reson Imaging. 2019; 58: 44-55
        • Naresh N.K.
        • Haji-Valizadeh H.
        • Aouad P.J.
        • et al.
        Accelerated, first-pass cardiac perfusion pulse sequence with radial k-space sampling, compressed sensing, and k-space weighted image contrast reconstruction tailored for visual analysis and quantification of myocardial blood flow.
        Magn Reson Med. 2019; 81: 2632-2643
        • Cukur T.
        • Lustig M.
        • Nishimura D.G.
        Improving non-contrast-enhanced steady-state free precession angiography with compressed sensing.
        Magn Reson Med. 2009; 61: 1122-1131
        • Cukur T.
        • Lustig M.
        • Saritas E.U.
        • et al.
        Signal compensation and compressed sensing for magnetization-prepared MR angiography.
        IEEE Trans Med Imaging. 2011; 30: 1017-1027
        • Langet H.
        • Riddell C.
        • Trousset Y.
        • et al.
        Compressed sensing based 3D tomographic reconstruction for rotational angiography.
        Med Image Comput Comput Assist Interv. 2011; 14: 97-104
        • Langet H.
        • Riddell C.
        • Trousset Y.
        • et al.
        Compressed sensing dynamic reconstruction in rotational angiography.
        Med Image Comput Comput Assist Interv. 2012; 15: 223-230
        • Changgong Z.
        • van de Giessen M.
        • Eisemann E.
        • et al.
        User-guided compressed sensing for magnetic resonance angiography.
        Conf Proc IEEE Eng Med Biol Soc. 2014; 2014: 2416-2419
        • Konar A.S.
        • Aiholli S.
        • Shashikala H.C.
        • et al.
        Application of region of interest compressed sensing to accelerate magnetic resonance angiography.
        Conf Proc IEEE Eng Med Biol Soc. 2014; 2014: 2428-2431
        • Rapacchi S.
        • Han F.
        • Natsuaki Y.
        • et al.
        High spatial and temporal resolution dynamic contrast-enhanced magnetic resonance angiography using compressed sensing with magnitude image subtraction.
        Magn Reson Med. 2014; 71: 1771-1783
        • Roujol S.
        • Foppa M.
        • Basha T.A.
        • et al.
        Accelerated free breathing ECG triggered contrast enhanced pulmonary vein magnetic resonance angiography using compressed sensing.
        J Cardiovasc Magn Reson. 2014; 16: 91
        • Rapacchi S.
        • Natsuaki Y.
        • Plotnik A.
        • et al.
        Reducing view-sharing using compressed sensing in time-resolved contrast-enhanced magnetic resonance angiography.
        Magn Reson Med. 2015; 74: 474-481
        • Akasaka T.
        • Fujimoto K.
        • Yamamoto T.
        • et al.
        Optimization of regularization parameters in compressed sensing of magnetic resonance angiography: can statistical image metrics mimic radiologists' perception?.
        PLoS One. 2016; 11: e0146548
        • Fushimi Y.
        • Fujimoto K.
        • Okada T.
        • et al.
        Compressed sensing 3-dimensional time-of-flight magnetic resonance angiography for cerebral aneurysms: optimization and evaluation.
        Invest Radiol. 2016; 51: 228-235
        • Moghari M.H.
        • Annese D.
        • Geva T.
        • et al.
        Three-dimensional heart locator and compressed sensing for whole-heart MR angiography.
        Magn Reson Med. 2016; 75: 2086-2093
        • Li B.
        • Li H.
        • Dong L.
        • et al.
        Fast carotid artery MR angiography with compressed sensing based three-dimensional time-of-flight sequence.
        Magn Reson Imaging. 2017; 43: 129-135
        • Lu S.S.
        • Qi M.
        • Zhang X.
        • et al.
        Clinical evaluation of highly accelerated compressed sensing time-of-flight MR angiography for intracranial arterial stenosis.
        AJNR Am J Neuroradiol. 2018; 39: 1833-1838
        • Moghari M.H.
        • Uecker M.
        • Roujol S.
        • et al.
        Accelerated whole-heart MR angiography using a variable-density poisson-disc undersampling pattern and compressed sensing reconstruction.
        Magn Reson Med. 2018; 79: 761-769
        • Nakamura M.
        • Kido T.
        • Kido T.
        • et al.
        Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: a comparison with conventional imaging.
        Eur J Radiol. 2018; 104: 43-48
        • Shen D.
        • Edelman R.R.
        • Robinson J.D.
        • et al.
        Single-shot coronary quiescent-interval slice-selective magnetic resonance angiography using compressed sensing: a feasibility study in patients with congenital heart disease.
        J Comput Assist Tomogr. 2018; 42: 739-746
        • Yamamoto T.
        • Okada T.
        • Fushimi Y.
        • et al.
        Magnetic resonance angiography with compressed sensing: an evaluation of moyamoya disease.
        PLoS One. 2018; 13: e0189493
        • Zhou Z.
        • Han F.
        • Yu S.
        • et al.
        Accelerated noncontrast-enhanced 4-dimensional intracranial MR angiography using golden-angle stack-of-stars trajectory and compressed sensing with magnitude subtraction.
        Magn Reson Med. 2018; 79: 867-878
        • Lin Z.
        • Zhang X.
        • Guo L.
        • et al.
        Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
        J Magn Reson Imaging. 2019; 50: 1843-1851
        • Meixner C.R.
        • Liebig P.
        • Speier P.
        • et al.
        High resolution time-of-flight MR-angiography at 7T exploiting VERSE saturation, compressed sensing and segmentation.
        Magn Reson Imaging. 2019; 63: 193-204
        • Fritz J.
        • Raithel E.
        • Thawait G.K.
        • et al.
        Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction-first experience.
        Invest Radiol. 2016; 51: 400-409
        • Li G.
        • Zaitsev M.
        • Buchert M.
        • et al.
        Improving the robustness of 3D turbo spin echo imaging to involuntary motion.
        MAGMA. 2015; 28: 329-345
        • Fritz J.
        • Fritz B.
        • Thawait G.G.
        • et al.
        Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee.
        Invest Radiol. 2016; 51: 609-617
        • Kalia V.
        • Fritz B.
        • Johnson R.
        • et al.
        CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons.
        Eur Radiol. 2017; 27: 3652-3661
        • Fritz J.
        • Ahlawat S.
        • Fritz B.
        • et al.
        10-Min 3D turbo spin echo MRI of the knee in children: arthroscopy-validated accuracy for the diagnosis of internal derangement.
        J Magn Reson Imaging. 2019; 49: e139-e151
        • Kijowski R.
        • Rosas H.
        • Samsonov A.
        • et al.
        Knee imaging: rapid three-dimensional fast spin-echo using compressed sensing.
        J Magn Reson Imaging. 2017; 45: 1712-1722
        • Altahawi F.F.
        • Blount K.J.
        • Morley N.P.
        • et al.
        Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences.
        Skeletal Radiol. 2017; 46: 7-15
        • Lee S.H.
        • Lee Y.H.
        • Suh J.S.
        Accelerating knee MR imaging: compressed sensing in isotropic three-dimensional fast spin-echo sequence.
        Magn Reson Imaging. 2017; 46: 90-97
        • Gersing A.S.
        • Bodden J.
        • Neumann J.
        • et al.
        Accelerating anatomical 2D turbo spin echo imaging of the ankle using compressed sensing.
        Eur J Radiol. 2019; 118: 277-284
        • Matcuk G.R.
        • Gross J.S.
        • Fields B.K.K.
        • et al.
        Compressed sensing MR imaging (CS-MRI) of the knee: assessment of quality, inter-reader agreement, and acquisition time.
        Magn Reson Med Sci. 2019; https://doi.org/10.2463/mrms.tn.2019-0095
        • Zibetti M.V.W.
        • Baboli R.
        • Chang G.
        • et al.
        Rapid compositional mapping of knee cartilage with compressed sensing MRI.
        J Magn Reson Imaging. 2018; 48: 1185-1198
        • Lee S.H.
        • Lee Y.H.
        • Song H.T.
        • et al.
        Rapid acquisition of magnetic resonance imaging of the shoulder using three-dimensional fast spin echo sequence with compressed sensing.
        Magn Reson Imaging. 2017; 42: 152-157
        • Chang A.L.
        • Yu H.J.
        • von Borstel D.
        • et al.
        Advanced imaging techniques of the wrist.
        AJR Am J Roentgenol. 2017; 209: 497-510
        • Fritz J.
        • Lurie B.
        • Potter H.G.
        MR imaging of knee arthroplasty implants.
        Radiographics. 2015; 35: 1483-1501
        • Fritz J.
        • Ahlawat S.
        • Demehri S.
        • et al.
        Compressed sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants.
        Invest Radiol. 2016; 51: 666-676
        • Fritz J.
        • Fritz B.
        • Thawait G.K.
        • et al.
        Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC.
        Skeletal Radiol. 2016; 45: 1345-1356
        • Jungmann P.M.
        • Bensler S.
        • Zingg P.
        • et al.
        Improved visualization of juxtaprosthetic tissue using metal artifact reduction magnetic resonance imaging: experimental and clinical optimization of compressed sensing SEMAC.
        Invest Radiol. 2019; 54: 23-31
        • Sonnow L.
        • Gilson W.D.
        • Raithel E.
        • et al.
        Instrument visualization using conventional and compressed sensing SEMAC for interventional MRI at 3T.
        J Magn Reson Imaging. 2018; 47: 1306-1315
        • de Cesar Netto C.
        • Fonseca L.F.
        • Fritz B.
        • et al.
        Metal artifact reduction MRI of total ankle arthroplasty implants.
        Eur Radiol. 2018; 28: 2216-2227
        • de Cesar Netto C.
        • Schon L.C.
        • da Fonseca L.F.
        • et al.
        Metal artifact reduction MRI for total ankle replacement sagittal balance evaluation.
        Foot Ankle Surg. 2018; 25: 739-747
        • Worters P.W.
        • Sung K.
        • Stevens K.J.
        • et al.
        Compressed-sensing multispectral imaging of the postoperative spine.
        J Magn Reson Imaging. 2013; 37: 243-248
        • Kayvanrad M.
        • Lin A.
        • Joshi R.
        • et al.
        Diagnostic quality assessment of compressed sensing accelerated magnetic resonance neuroimaging.
        J Magn Reson Imaging. 2016; 44: 433-444
        • Vranic J.E.
        • Cross N.M.
        • Wang Y.
        • et al.
        Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality.
        AJNR Am J Neuroradiol. 2019; 40: 92-98
        • Takato Y.
        • Hata H.
        • Inoue Y.
        • et al.
        Evaluation of a novel reconstruction method based on the compressed sensing technique: application to cervical spine MR imaging.
        Clin Imaging. 2019; 56: 140-145
        • Morita K.
        • Nakaura T.
        • Maruyama N.
        • et al.
        Hybrid of compressed sensing and parallel imaging applied to three-dimensional isotropic T2-weighted turbo spin-echo MR imaging of the lumbar spine.
        Magn Reson Med Sci. 2019; 19: 48-55
        • Bratke G.
        • Rau R.
        • Weiss K.
        • et al.
        Accelerated MRI of the lumbar spine using compressed sensing: quality and efficiency.
        J Magn Reson Imaging. 2019; 49: e164-e175
        • Sartoretti T.
        • Reischauer C.
        • Sartoretti E.
        • et al.
        Common artefacts encountered on images acquired with combined compressed sensing and SENSE.
        Insights Imaging. 2018; 9: 1107-1115
        • Sharma S.D.
        • Fong C.L.
        • Tzung B.S.
        • et al.
        Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing.
        Invest Radiol. 2013; 48: 638-645