Advertisement
Review Article| Volume 2, P325-339, September 2020

Advances in Spine Tumor Imaging and Intervention

      A combination of conventional and advanced imaging is required for complete characterization of spinal metastases before and after treatment.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cuccurullo V.
        • Cascini G.L.
        • Tamburrini O.
        • et al.
        Bone metastases radiopharmaceuticals: an overview.
        Curr Radiopharm. 2013; 6: 41-47
        • Choi J.
        • Raghavan M.
        Diagnostic imaging and image-guided therapy of skeletal metastases.
        Cancer Control. 2012; 19: 102-112
        • Buhmann-kirchhoff S.
        • Becker C.
        • Duerr H.R.
        • et al.
        Detection of osseous metastases of the spine: comparison of high resolution multi-detector-CT with MRI.
        Eur J Radiol. 2009; 69: 567-573
        • Zhadanov S.I.
        • Doshi A.H.
        • Pawha P.S.
        • et al.
        Contrast-enhanced Dixon fat-water separation imaging of the spine: added value of fat, in-phase and opposed-phase imaging in marrow lesion detection.
        J Comput Assist Tomogr. 2016; 40: 985-990
        • Stradiotti P.
        • Curti A.
        • Castellazzi G.
        • et al.
        Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art.
        Eur Spine J. 2009; 18: 102-108
        • McLellan A.M.
        • Daniel S.
        • Corcuera-solano I.
        • et al.
        Optimized imaging of the postoperative spine.
        Neuroimaging Clin N Am. 2014; 24: 349-364
        • Lang N.
        • Su M.Y.
        • Yu H.J.
        • et al.
        Differentiation of myeloma and metastatic cancer in the spine using dynamic contrast-enhanced MRI.
        Magn Reson Imaging. 2013; 31: 1285-1291
        • Cao Y.
        The promise of dynamic contrast-enhanced imaging in radiation therapy.
        Semin Radiat Oncol. 2011; 21: 147-156
        • Verstraete K.L.
        • Van der woude H.J.
        • Hogendoorn P.C.
        • et al.
        Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications.
        J Magn Reson Imaging. 1996; 6: 311-321
        • Dutoit J.C.
        • Vanderkerken M.A.
        • Verstraete K.L.
        Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma.
        Eur J Radiol. 2013; 82: 1444-1452
        • Lavini C.
        • De jonge M.C.
        • Van de sande M.G.
        • et al.
        Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system.
        Magn Reson Imaging. 2007; 25: 604-612
        • Tofts P.S.
        Modeling tracer kinetics in dynamic Gd-DTPA MR imaging.
        J Magn Reson Imaging. 1997; 7: 91-101
        • Chu S.
        • Karimi S.
        • Peck K.K.
        • et al.
        Measurement of blood perfusion in spinal metastases with dynamic contrast-enhanced magnetic resonance imaging: evaluation of tumor response to radiation therapy.
        Spine. 2013; 38: E1418-E1424
        • Saha A.
        • Peck K.K.
        • Lis E.
        • et al.
        Magnetic resonance perfusion characteristics of hyper-vascular renal and hypovascular prostate spinal metastases: clinical utilities and implications.
        Spine (Phila Pa 1976). 2014; 39: E1433-E1440
        • Kumar K.A.
        • Peck K.K.
        • Karimi S.
        • et al.
        A pilot study evaluating the use of dynamic contrast-enhanced perfusion MRI to predict local recurrence after radiosurgery on spinal metastases.
        Technol Cancer Res Treat. 2017; 16: 857-865
        • Baur A.
        • Stäbler A.
        • Brüning R.
        • et al.
        Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures.
        Radiology. 1998; 207: 349-356
        • Castillo M.
        • Arbelaez A.
        • Smith J.K.
        • et al.
        Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases.
        AJNR Am J Neuroradiol. 2000; 21: 948-953
        • Baur A.
        • Huber A.
        • Ertl-wagner B.
        • et al.
        Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures.
        AJNR Am J Neuroradiol. 2001; 22: 366-372
        • Thawait S.K.
        • Marcus M.A.
        • Morrison W.B.
        • et al.
        Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis.
        Spine. 2012; 37: E736-E744
        • Tanenbaum L.N.
        Clinical applications of diffusion imaging in the spine.
        Magn Reson Imaging Clin N Am. 2013; 21: 299-320
        • Sung J.K.
        • Jee W.H.
        • Jung J.Y.
        • et al.
        Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T.
        Radiology. 2014; 271: 488-498
        • Byun W.M.
        • Shin S.O.
        • Chang Y.
        • et al.
        Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy.
        AJNR Am J Neuroradiol. 2002; 23: 906-912
        • Padhani A.R.
        • Koh D.M.
        • Collins D.J.
        Whole-body diffusion-weighted MR imaging in cancer: current status and research directions.
        Radiology. 2011; 261: 700-718
        • Herneth A.M.
        • Philipp M.O.
        • Naude J.
        • et al.
        Vertebral metastases: assessment with apparent diffusion coefficient.
        Radiology. 2002; 225: 889-894
        • Kosmala A.
        • Weng A.M.
        • Heidemeier A.
        • et al.
        Multiple myeloma and dual-energy CT: diagnostic accuracy of virtual noncalcium technique for detection of bone marrow infiltration of the spine and pelvis.
        Radiology. 2018; 286: 205-213
        • Gibbs W.N.
        • Nael K.
        • Doshi A.H.
        • et al.
        Spine Oncology: Imaging and Intervention.
        Radiol Clin North Am. 2019; 57: 377-395
        • Katsura M.
        • Sato J.
        • Akahane M.
        • et al.
        Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists.
        Radiographics. 2018; 38: 450-461
        • Choi D.
        • Bilsky M.
        • Fehlings M.
        • et al.
        Spine oncology-metastatic spine tumors.
        Neurosurgery. 2017; 80: S131-S137
        • Shah L.M.
        • Salzman K.L.
        Imaging of spinal metastatic disease.
        Int J Surg Oncol. 2011; 2011: 769753
        • Even-Sapir E.
        • Metser U.
        • Mishani E.
        • et al.
        The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT.
        J Nucl Med. 2006; 47: 287-297
        • Baur-melnyk A.
        Malignant versus benign vertebral collapse: are new imaging techniques useful?.
        Cancer Imaging. 2009; 9: S49-S51
        • Cho W.I.
        • Chang U.K.
        Comparison of MR imaging and FDG-PET/CT in the differential diagnosis of benign and malignant vertebral compression fractures.
        J Neurosurg Spine. 2011; 14: 177-183
        • Mahajan A.
        • Azad G.K.
        • Cook G.J.
        PET imaging of skeletal metastases and its role in personalizing further management.
        PET Clin. 2016; 11: 305-318
        • Mick C.G.
        • James T.
        • Hill J.D.
        • et al.
        Molecular imaging in oncology: (18)F-sodium fluoride PET imaging of osseous metastatic disease.
        AJR Am J Roentgenol. 2014; 203: 263-271
        • Barzilai O.
        • Laufer I.
        • Yamada Y.
        • et al.
        Integrating evidence-based medicine for treatment of spinal metastases into a decision framework: neurologic, oncologic, mechanicals stability, and systemic disease.
        J Clin Oncol. 2017; 35: 2419-2427
        • Kaloostian P.E.
        • Yurter A.
        • Zadnik P.L.
        • et al.
        Current paradigms for metastatic spinal disease: an evidence-based review.
        Ann Surg Oncol. 2014; 21: 248-262
        • Laufer I.
        • Rubin D.G.
        • Lis E.
        • et al.
        The NOMS framework: approach to the treatment of spinal metastatic tumors.
        Oncologist. 2013; 18: 744-751
        • Paton G.R.
        • Frangou E.
        • Fourney D.R.
        Contemporary treatment strategy for spinal metastasis: the “LMNOP” system.
        Can J Neurol Sci. 2011; 38: 396-403
        • Barzilai O.
        • Fisher C.G.
        • Bilsky M.H.
        State of the art treatment of spinal metastatic disease.
        Neurosurgery. 2018; 82: 757-769
        • Fisher C.G.
        • DiPaola C.P.
        • Ryken T.C.
        • et al.
        A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group.
        Spine. 2010; 35: E1221-E1229
        • Fisher C.G.
        • Versteeg A.L.
        • Schouten R.
        • et al.
        Reliability of the spinal instability neoplastic scale among radiologists: an assessment of instability secondary to spinal metastases.
        AJR Am J Roentgenol. 2014; 203: 869-874
        • Ehresman J.
        • Pennington Z.
        • Schilling A.
        • et al.
        Novel MRI-based score for assessment of bone density in operative spine patients.
        Spine J. 2020; 20: 556-562
        • Faruqi S.
        • Tseng C.L.
        • Whyne C.
        • et al.
        Vertebral compression fracture after spine stereotactic body radiation therapy: a review of the pathophysiology and risk factors.
        Neurosurgery. 2018; 83: 314-322
        • Bilsky M.H.
        • Laufer I.
        • Fourney D.R.
        • et al.
        Reliability analysis of the epidural spinal cord compression scale.
        J Neurosurg Spine. 2010; 13: 324-328
        • Gerszten P.C.
        Spine metastases: from radiotherapy, surgery, to radiosurgery.
        Neurosurgery. 2014; 61: 16-25
        • Georgy B.A.
        Vertebroplasty technique in metastatic disease.
        Neuroimaging Clin N Am. 2010; 20: 169-177
        • Gibbs W.N.
        • Doshi A.
        Sacral fractures and sacroplasty.
        Neuroimaging Clin N Am. 2019; 29: 515-527
        • Dupuy D.E.
        • Liu D.
        • Hartfeil D.
        • et al.
        Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial.
        Cancer. 2010; 116: 989-997
        • Hinshaw J.L.
        • Lubner M.G.
        • Ziemlewicz T.J.
        • et al.
        Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation--what should you use and why.
        Radiographics. 2014; 34: 1344-1362
        • Wallace A.N.
        • Greenwood T.J.
        • Jennings J.W.
        Use of imaging in the management of metastatic spine disease with percutaneous ablation and vertebral augmentation.
        AJR Am J Roentgenol. 2015; 205: 434-441