Advertisement
Advances in Clinical Radiology

Clinical Image-Guided Ablation for Thyroid Malignancy with Proposed Thyroid Segmentation System

      Specific to the thyroid, the term image-guided ablation helps distinguish this treatment from the term ablation, which is colloquially recognized in the literature as radioactive I-131 treatment.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Welch H.G.
        • Doherty G.M.
        Saving Thyroids - Overtreatment of Small Papillary Cancers.
        N Engl J Med. 2018; 379: 310-312
        • Giordano T.J.
        Genomic Hallmarks of Thyroid Neoplasia.
        Annu Rev Pathol Mech Dis. 2018; 13: 141-162
        • Hundahl S.A.
        • Fleming I.D.
        • Fremgen A.M.
        • et al.
        A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985-1995.
        Cancer. 1998; 83: 2638-2648
        • Simon D.
        • Goretzki P.E.
        • Witte J.
        • et al.
        Incidence of regional recurrence guiding radicality in differentiated thyroid carcinoma.
        World J Surg. 1996; 20: 860-866
        • Wada N.
        • Nakayama H.
        • Suganuma N.
        • et al.
        Brief report: Prognostic value of the sixth edition AJCC/UICC TNM classification for differentiated thyroid carcinoma with extrathyroid extension.
        J Clin Endocrinol Metab. 2007; 92: 215-218
        • Adam M.A.
        • Thomas S.
        • Youngwirth L.
        • et al.
        Is There a Minimum Number of Thyroidectomies a Surgeon Should Perform to Optimize Patient Outcomes?.
        Ann Surg. 2017; 265: 402-407
        • Ito Y.
        • Miyauchi A.
        • Oda H.
        Low-risk papillary microcarcinoma of the thyroid: A review of active surveillance trials.
        Eur J Surg Oncol. 2018; 44: 307-315
        • Tuttle R.
        • Fagin J.A.
        • Minkowitz G.
        • et al.
        Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance.
        JAMA Otolaryngol–Head Neck Surg. 2017; 143: 1015-1020
        • Kim J-h
        • Baek J.H.
        • Lim H.K.
        • et al.
        2017 Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology.
        Korean J Radiol. 2018; 19: 632-655
        • Smith V.A.
        • Sessions R.B.
        • Lentsch E.J.
        Cervical lymph node metastasis and papillary thyroid carcinoma: does the compartment involved affect survival? Experience from the SEER database.
        J Surg Oncol. 2012; 106: 357-362
        • Moreno M.A.
        • Edeiken-Monroe B.S.
        • Siegel E.R.
        • et al.
        In papillary thyroid cancer, preoperative central neck ultrasound detects only macroscopic surgical disease, but negative findings predict excellent long-term regional control and survival.
        Thyroid. 2012; 22: 347-355
        • Randolph G.W.
        • Duh Q.Y.
        • Heller K.S.
        • et al.
        The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension.
        Thyroid. 2012; 22: 1144-1152
        • Mazzaferri E.L.
        • Jhiang S.M.
        Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer.
        Am J Med. 1994; 97: 418-428
        • Podnos Y.D.
        • Smith D.
        • Wagman L.D.
        • et al.
        The implication of lymph node metastasis on survival in patients with well-differentiated thyroid cancer.
        Am Surg. 2005; 71: 731-734
        • Zaydfudim V.
        • Feurer I.D.
        • Griffin M.R.
        • et al.
        The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma.
        Surgery. 2008; 144 ([discussion: 1077–8]): 1070-1077
        • Tuttle R.M.
        • Haugen B.
        • Perrier N.D.
        Updated American Joint Committee on Cancer/Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eighth Edition): What Changed and Why?.
        Thyroid. 2017; 27: 751-756
        • Mazzaferri E.L.
        A vision for the surgical management of papillary thyroid carcinoma: extensive lymph node compartmental dissections and selective use of radioiodine.
        J Clin Endocrinol Metab. 2009; 94: 1086-1088
        • Jin W.-X.
        • Ye D.-R.
        • Sun Y.-H.
        • et al.
        Prediction of central lymph node metastasis in papillary thyroid microcarcinoma according to clinicopathologic factors and thyroid nodule sonographic features: a case-control study.
        Cancer Manag Res. 2018; 10: 3237-3243
        • Carling T.
        • Carty S.E.
        • Ciarleglio M.M.
        • et al.
        American Thyroid Association design and feasibility of a prospective randomized controlled trial of prophylactic central lymph node dissection for papillary thyroid carcinoma.
        Thyroid. 2012; 22: 237-244
        • Viola D.
        • Materazzi G.
        • Valerio L.
        • et al.
        Prophylactic central compartment lymph node dissection in papillary thyroid carcinoma: clinical implications derived from the first prospective randomized controlled single institution study.
        J Clin Endocrinol Metab. 2015; 100: 1316-1324
        • Shirley L.A.
        • Jones N.B.
        • Phay J.E.
        The Role of Central Neck Lymph Node Dissection in the Management of Papillary Thyroid Cancer.
        Front Oncol. 2017; 7: 122
        • Suh C.H.
        • Baek J.H.
        • Choi Y.J.
        • et al.
        Performance of CT in the Preoperative Diagnosis of Cervical Lymph Node Metastasis in Patients with Papillary Thyroid Cancer: A Systematic Review and Meta-Analysis.
        Am J Neuroradiol. 2017; 38: 154-161
        • Wada N.
        • Duh Q.Y.
        • Sugino K.
        • et al.
        Lymph Node Metastasis from 259 Papillary Thyroid Microcarcinomas: Frequency, Pattern of Occurrence and Recurrence, and Optimal Strategy for Neck Dissection.
        Ann Surg. 2003; 237: 399-407
        • Ito Y.
        • Miyauchi A.
        • Kudo T.
        • et al.
        The Effectiveness of Prophylactic Modified Neck Dissection for Reducing the Development of Lymph Node Recurrence of Papillary Thyroid Carcinoma.
        World J Surg. 2017; 41: 2283-2289
        • Haugen B.R.
        • Alexander E.K.
        • Bible K.C.
        • et al.
        2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer.
        Thyroid. 2016; 26: 1-133
        • Luo Y.
        • Zhao Y.
        • Chen K.
        • et al.
        Clinical analysis of cervical lymph node metastasis risk factors in patients with papillary thyroid microcarcinoma.
        J Endocrinol Invest. 2019; 42: 227-236
        • Zhou R.
        • Dong H.
        • Zhang H.
        • et al.
        Risk factors for lymph node metastasis in central zone of papillary thyroid microcarcinoma.
        Acta Med Mediterr. 2019; 35: 37-40
        • Teng D.
        • Sui G.
        • Liu C.
        • et al.
        Long-term efficacy of ultrasound-guided low power microwave ablation for the treatment of primary papillary thyroid microcarcinoma: a 3-year follow-up study.
        J Cancer Res Clin Oncol. 2018; 144: 771-779
        • Li J.
        • Liu Y.
        • Liu J.
        • et al.
        Ultrasound-guided percutaneous microwave ablation versus surgery for papillary thyroid microcarcinoma.
        Int J Hyperthermia. 2018; 34: 653-659
        • Jeong S.Y.
        • Baek J.H.
        • Choi Y.J.
        • et al.
        Radiofrequency ablation of primary thyroid carcinoma: efficacy according to the types of thyroid carcinoma.
        Int J Hyperthermia. 2018; 34: 611-616
        • Kim J.H.
        • Baek J.H.
        • Sung J.Y.
        • et al.
        Radiofrequency ablation of low-risk small papillary thyroidcarcinoma: preliminary results for patients ineligible for surgery.
        Int J Hyperthermia. 2017; 33: 212-219
        • Zhou W.
        • Jiang S.
        • Zhan W.
        • et al.
        Ultrasound-guided percutaneous laser ablation of unifocal T1N0M0 papillary thyroid microcarcinoma: Preliminary results.
        Eur Radiol. 2017; 27: 2934-2940
        • Zhang M.
        • Luo Y.
        • Zhang Y.
        • et al.
        Efficacy and safety of ultrasound-guided radiofrequency ablation for treating low-risk papillary thyroid microcarcinoma: A prospective study.
        Thyroid. 2016; 26: 1581-1587
        • Yue W.
        • Wang S.
        • Yu S.
        • et al.
        Ultrasound-guided percutaneous microwave ablation of solitary T1N0M0 papillary thyroid microcarcinoma: initial experience.
        Int J Hyperthermia. 2014; 30: 150-157
        • Valcavi R.
        • Piana S.
        • Bortolan G.S.
        • et al.
        Ultrasound-guided percutaneous laser ablation of papillary thyroid microcarcinoma: A feasibility study on three cases with pathological and immunohistochemical evaluation.
        Thyroid. 2013; 23: 1578-1582
        • Papini E.
        • Guglielmi R.
        • Hosseim G.
        • et al.
        Ultrasound-guided laser ablation of incidental papillary thyroid microcarcinoma: A potential therapeutic approach in patients at surgical risk.
        Thyroid. 2011; 21: 917-920
        • He J.
        • Liu G.
        • Shao K.
        • et al.
        Serum contents of matrix metalloproteinase-2 and 9 are correlated with the prognosis of papillary thyroid carcinoma after ultrasound-guided radiofrequency ablation.
        Biomed Res (India). 2017; 28: 6711-6716
        • Teng D.
        • Ding L.
        • Wang Y.
        • et al.
        Safety and efficiency of ultrasound-guided low power microwave ablation in the treatment of cervical metastatic lymph node from papillary thyroid carcinoma: a mean of 32 months follow-up study.
        Endocrine. 2018; 62: 648-654
        • Kim S.Y.
        • Kim S.M.
        • Chang H.
        • et al.
        Long-term outcomes of ethanol injection therapy for locally recurrent papillary thyroid cancer.
        Eur Arch Otorhinolaryngol. 2017; 274: 3497-3501
        • Yue W.
        • Chen L.
        • Wang S.
        • et al.
        Locoregional control of recurrent papillary thyroid carcinoma by ultrasound-guided percutaneous microwave ablation: A prospective study.
        Int J Hyperthermia. 2015; 31: 403-408
        • Papini E.
        • Bizzarri G.
        • Bianchini A.
        • et al.
        Percutaneous ultrasound-guided laser ablation is effective for treating selected nodal metastases in papillary thyroid cancer.
        J Clin Endocrinol Metab. 2013; 98: E92-E97
        • Baek J.H.
        • Kim Y.S.
        • Sung J.Y.
        • et al.
        Locoregional control of metastatic well-differentiated thyroid cancer by ultrasound-guided radiofrequency ablation.
        Am J Roentgenol. 2011; 197: W331-W336
        • Sohn Y.M.
        • Hong S.W.
        • Kim E.K.
        • et al.
        Complete eradication of metastatic lymph node after percutaneous ethanol injection therapy: Pathologic correlation.
        Thyroid. 2009; 19: 317-319
        • Xing M.
        • Liu R.
        • Liu X.
        • et al.
        BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence.
        J Clin Oncol. 2014; 32: 2718-2726
        • Oddo S.
        • Spina B.
        • Vellone V.G.
        • et al.
        A case of thyroid cancer on the track of the radiofrequency electrode 30 months after percutaneous ablation.
        J Endocrinol Invest. 2017; 40: 101-102
        • Wang J.F.
        • Wu T.
        • Hu K.P.
        • et al.
        Complications Following Radiofrequency Ablation of Benign Thyroid Nodules: A Systematic Review.
        Chin Med J. 2017; 130: 1361-1370
      1. Richards MD, WM, Sosa MD. Surgical anatomy of the thyroid gland. Carty SE, editor. MA: UpToDate Inc. Available at: https://www.uptodate.com/contents/surgical-anatomy-of-the-thyroid-gland. Accessed September 16, 2018.

        • Brunicardi F.C.
        • Andersen D.K.
        • Billiar T.R.
        • et al.
        Schwartz's principles of surgery [electronic resource]. McGraw-Hill Education, New York2014
        • Hartl D.M.
        • Travagli J.-P.
        • Baudin E.
        • et al.
        Current Concepts in the Management of Unilateral Recurrent Laryngeal Nerve Paralysis after Thyroid Surgery.
        J Clin Endocrinol Metab. 2005; 90: 3084-3088
        • Kurup A.N.
        • Morris J.M.
        • Schmit G.D.
        • et al.
        Neuroanatomic Considerations in Percutaneous Tumor Ablation.
        Radiographics. 2013; 33: 1195-1215
        • Ilfeld B.M.
        • Gabriel R.A.
        • Trescot A.M.
        Ultrasound-guided percutaneous cryoneurolysis providing postoperative analgesia lasting many weeks following a single administration: a replacement for continuous peripheral nerve blocks?: a case report.
        Korean J Anesthesiol. 2017; 70: 567-570
        • Ott D.E.
        Subcutaneous Emphysema—Beyond the Pneumoperitoneum.
        JSLS. 2014; 18: 1-7
        • Buy X.
        • Tok C.H.
        • Szwarc D.
        • et al.
        Thermal protection during percutaneous thermal ablation procedures: interest of carbon dioxide dissection and temperature monitoring.
        Cardiovasc Intervent Radiol. 2009; 32: 529-534
        • Cernea C.R.
        • Ferraz A.R.
        • Nishio S.
        • et al.
        Surgical anatomy of the external branch of the superior laryngeal nerve.
        Head Neck. 1992; 14: 380-383
        • Shepard R.S.
        • Whitty A.J.
        Bilateral Cervical Vagotomy: A Long-Term Study on the Unanesthetized Dog.
        Am J Physiol. 1964; 206: 265-269
        • Standring S.
        Gray's anatomy [electronic resource]: the anatomical basis of clinical practice. Elsevier Limited, New York2016
        • Akerstrom G.
        • Malmaeus J.
        • Bergstrom R.
        Surgical anatomy of human parathyroid glands.
        Surgery. 1984; 95: 14-21
        • Hassan R.M.
        • Hashim R.M.
        Analgesic efficacy of ultrasound guided versus landmark-based bilateral superficial cervical plexus block for thyroid surgery.
        Egypt J Anaesth. 2017; 33: 365-373
        • Maybody M.
        • Tang P.Q.
        • Moskowitz C.S.
        • et al.
        Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal tumours.
        Eur Radiol. 2017; 27: 1202-1210
        • Lemperle G.
        • Tenenhaus M.
        • Knapp D.
        • et al.
        The direction of optimal skin incisions derived from striae distensae.
        Plast Reconstr Surg. 2014; 134: 1424-1434
        • Qubain S.W.
        • Nakano S.
        • Baba M.
        • et al.
        Distribution of lymph node micrometastasis in pN0 well-differentiated thyroid carcinoma.
        Surgery. 2002; 131: 249-256
        • Chung Y.S.
        • Kim J.Y.
        • Bae J.-S.
        • et al.
        Lateral lymph node metastasis in papillary thyroid carcinoma: results of therapeutic lymph node dissection.
        Thyroid. 2009; 19: 241
        • Park J.H.
        • Lee Y.S.
        • Kim B.W.
        • et al.
        Skip lateral neck node metastases in papillary thyroid carcinoma.
        World J Surg. 2012; 36: 743-747
        • Chang Y.W.
        • Lee H.Y.
        • Kim H.S.
        • et al.
        Extent of central lymph node dissection for papillary thyroid carcinoma in the isthmus.
        Ann Surg Treat Res. 2018; 94: 229-234