Advertisement
Review Article| Volume 2, P285-297, September 2020

Artificial Intelligence and Machine Learning Applications in Musculoskeletal Imaging

      Artificial intelligence applications, particularly machine learning (ML) algorithms using deep learning (DL) architectures, are increasingly being applied in medical imaging and musculoskeletal radiology.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lodwick G.S.
        • Haun C.L.
        • Smith W.E.
        • et al.
        Computer diagnosis of primary bone tumors: a preliminary report.
        Radiology. 1963; 2 (Available at:): 273
        • Chartrand G.
        • Cheng P.M.
        • Vorontsov E.
        • et al.
        Deep learning: a primer for radiologists.
        Radiographics. 2017; 37: 2113-2131
        • Erickson B.J.
        • Korfiatis P.
        • Akkus Z.
        • et al.
        Machine learning for medical imaging.
        Radiographics. 2017; 37: 505-515
        • Kohli M.
        • Prevedello L.M.
        • Filice R.W.
        • et al.
        Implementing machine learning in radiology practice and research.
        AJR Am J Roentgenol. 2017; 208: 754-760
        • McBee M.P.
        • Awan O.A.
        • Colucci A.T.
        • et al.
        Deep learning in radiology.
        Acad Radiol. 2018; 25: 1472-1480
        • Zaharchuk G.
        • Gong E.
        • Wintermark M.
        • et al.
        Deep learning in neuroradiology.
        AJNR Am J Neuroradiol. 2018; 39: 1776-1784
        • Burnside E.S.
        Bayesian networks: computer-assisted diagnosis support in radiology.
        Acad Radiol. 2005; 12: 422-430
        • Lincoln T.L.
        • Parker R.D.
        Medical diagnosis using bayes theorem.
        Health Serv Res. 1967; 2: 34-45
        • Choy G.
        • Khalilzadeh O.
        • Michalski M.
        • et al.
        Current applications and future impact of machine learning in radiology.
        Radiology. 2018; 288: 318-328
        • Boone J.M.
        • Gross G.W.
        • Greco-Hunt V.
        Neural networks in radiologic diagnosis. I. Introduction and illustration.
        Invest Radiol. 1990; 25: 1012-1016
        • Krizhevsky A.
        • Sutskever I.
        • Hinton G.E.
        ImageNet classification with deep convolutional neural networks.
        in: Advances in neural information processing systems 25. vol. 1. Curran Associates, Inc, 2012: 1097-1105 (Available at:)
        • Yasaka K.
        • Abe O.
        Deep learning and artificial intelligence in radiology: current applications and future directions.
        PLoS Med. 2018; 15https://doi.org/10.1371/journal.pmed.1002707
        • Hirschmann A.
        • Cyriac J.
        • Stieltjes B.
        • et al.
        Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends.
        Semin Musculoskelet Radiol. 2019; 23: 304-311
        • Gyftopoulos S.
        • Lin D.
        • Knoll F.
        • et al.
        Artificial intelligence in musculoskeletal imaging: current status and future directions.
        AJR Am J Roentgenol. 2019; : 1-8https://doi.org/10.2214/AJR.19.21117
        • Liu F.
        • Kijowski R.
        Deep learning in musculoskeletal imaging.
        Adv Clin Radiol. 2019; 1: 83-94
        • Lee Y.H.
        Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks.
        J Digit Imaging. 2018; 31: 604-610
        • Liu F.
        • Feng L.
        • Kijowski R.
        MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
        Magn Reson Med. 2019; https://doi.org/10.1002/mrm.27707
        • Cheng J.Y.
        • Chen F.
        • Alley M.T.
        • et al.
        Highly scalable image reconstruction using deep neural networks with bandpass filtering. ArXiv180503300 Phys.
        (Available at:) (Accessed January 21, 2019)
        • Avendi M.R.
        • Kheradvar A.
        • Jafarkhani H.
        A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.
        Med Image Anal. 2016; 30: 108-119
        • Trebeschi S.
        • van Griethuysen J.J.M.
        • Lambregts D.M.J.
        • et al.
        Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR.
        Sci Rep. 2018; 8: 2589
        • Cabitza F.
        • Locoro A.
        • Banfi G.
        Machine learning in orthopedics: a literature review.
        Front Bioeng Biotechnol. 2018; 6https://doi.org/10.3389/fbioe.2018.00075
        • Jones L.D.
        • Golan D.
        • Hanna S.A.
        • et al.
        Artificial intelligence, machine learning and the evolution of healthcare.
        Bone Joint Res. 2018; 7: 223-225
        • Lodwick G.S.
        The bone and joints.
        in: Hodes P.J. Atlas of tumor radiology. Year Book Medical Publishers, Chicago, IL1971
        • Richardson M.L.
        Bayesian bone tumor diagnosis.
        (Available at:) (Accessed December 21, 2018)
        • Kahn C.E.
        • Laur J.J.
        • Carrera G.F.
        A Bayesian network for diagnosis of primary bone tumors.
        J Digit Imaging. 2001; 14: 56-57
        • Do B.H.
        • Langlotz C.
        • Beaulieu C.F.
        Bone tumor diagnosis using a naïve bayesian model of demographic and radiographic features.
        J Digit Imaging. 2017; 30: 640-647
        • Banerjee I.
        • Kurtz C.
        • Devorah A.E.
        • et al.
        Relevance feedback for enhancing content based image retrieval and automatic prediction of semantic image features: Application to bone tumor radiographs.
        J Biomed Inform. 2018; 84: 123-135
        • Piraino D.W.
        • Amartur S.C.
        • Richmond B.J.
        • et al.
        Application of an artificial neural network in radiographic diagnosis.
        J Digit Imaging. 1991; 4: 226-232
        • Reinus W.R.
        • Wilson A.J.
        • Kalman B.
        • et al.
        Diagnosis of focal bone lesions using neural networks.
        Invest Radiol. 1994; 29: 606-611
        • Reinus W.R.
        • Wilson A.J.
        Quantitative analysis of solitary lesions of bone.
        Invest Radiol. 1995; 30: 427-432
        • Friedland J.A.
        • Reinus W.R.
        • Fisher A.J.
        • et al.
        Quantitative analysis of the plain radiographic appearance of nonossifying fibroma.
        Invest Radiol. 1995; 30: 474-479
        • Fisher A.J.
        • Reinus W.R.
        • Friedland J.A.
        • et al.
        Quantitative analysis of the plain radiographic appearance of eosinophilic granuloma.
        Invest Radiol. 1995; 30: 466-473
        • Freeby J.A.
        • Reinus W.R.
        • Wilson A.J.
        Quantitative analysis of the plain radiographic appearance of aneurysmal bone cysts.
        Invest Radiol. 1995; 30: 433-439
        • Lee J.H.
        • Reinus W.R.
        • Wilson A.J.
        Quantitative analysis of the plain radiographic appearance of unicameral bone cysts.
        Invest Radiol. 1999; 34: 28-37
        • West O.C.
        • Reinus W.R.
        • Wilson A.J.
        Quantitative analysis of the plain radiographic appearance of central chondrosarcoma of bone.
        Invest Radiol. 1995; 30: 440-447
        • Lejbkowicz I.
        • Wiener F.
        • Nachtigal A.
        • et al.
        Bone Browser a decision-aid for the radiological diagnosis of bone tumors.
        Comput Methods Programs Biomed. 2002; 67: 137-154
        • Akgül C.B.
        • Rubin D.L.
        • Napel S.
        • et al.
        Content-based image retrieval in radiology: current status and future directions.
        J Digit Imaging. 2011; 24: 208-222
        • Hu S.
        • Xu C.
        • Guan W.
        • et al.
        Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.
        Biomed Mater Eng. 2014; 24: 129-143
        • Thian Y.L.
        • Li Y.
        • Jagmohan P.
        • et al.
        Convolutional neural networks for automated fracture detection and localization on wrist radiographs.
        Radiol Artif Intell. 2019; 1: e180001
        • Rayan J.C.
        • Reddy N.
        • Kan J.H.
        • et al.
        Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making.
        Radiol Artif Intell. 2019; 1: e180015
        • Urakawa T.
        • Tanaka Y.
        • Goto S.
        • et al.
        Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network.
        Skeletal Radiol. 2019; 48: 239-244
        • Chung S.W.
        • Han S.S.
        • Lee J.W.
        • et al.
        Automated detection and classification of the proximal humerus fracture by using deep learning algorithm.
        Acta Orthop. 2018; 89: 468-473
        • Lindsey R.
        • Daluiski A.
        • Chopra S.
        • et al.
        Deep neural network improves fracture detection by clinicians.
        Proc Natl Acad Sci U S A. 2018; 115: 11591-11596
        • Adams M.
        • Chen W.
        • Holcdorf D.
        • et al.
        Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures.
        J Med Imaging Radiat Oncol. 2019; 63: 27-32
        • Burns J.E.
        • Yao J.
        • Summers R.M.
        Vertebral body compression fractures and bone density: automated detection and classification on CT images.
        Radiology. 2017; 284: 788-797
        • Muehlematter U.J.
        • Mannil M.
        • Becker A.S.
        • et al.
        Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning.
        Eur Radiol. 2019; 29: 2207-2217
        • Kruse C.
        • Goemaere S.
        • De Buyser S.
        • et al.
        Predicting mortality and incident immobility in older Belgian men by characteristics related to sarcopenia and frailty.
        Osteoporos Int. 2018; 29: 1437-1445
        • Liu F.
        • Zhou Z.
        • Jang H.
        • et al.
        Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.
        Magn Reson Med. 2018; 79: 2379-2391
        • Zhou Z.
        • Zhao G.
        • Kijowski R.
        • et al.
        Deep convolutional neural network for segmentation of knee joint anatomy.
        Magn Reson Med. 2018; 80: 2759-2770
        • Bien N.
        • Rajpurkar P.
        • Ball R.L.
        • et al.
        Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
        PLoS Med. 2018; 15: e1002699
        • Tajmir S.H.
        • Lee H.
        • Shailam R.
        • et al.
        Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability.
        Skeletal Radiol. 2019; 48: 275-283
        • Larson D.B.
        • Chen M.C.
        • Lungren M.P.
        • et al.
        Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs.
        Radiology. 2018; 287: 313-322
        • Kim J.R.
        • Shim W.H.
        • Yoon H.M.
        • et al.
        Computerized bone age estimation using deep learning based program: evaluation of the accuracy and efficiency.
        AJR Am J Roentgenol. 2017; 209: 1374-1380
        • Ren X.
        • Li T.
        • Yang X.
        • et al.
        Regression convolutional neural network for automated pediatric bone age assessment from hand radiograph.
        IEEE J Biomed Health Inform. 2018; https://doi.org/10.1109/JBHI.2018.2876916
        • Halabi S.S.
        • Prevedello L.M.
        • Kalpathy-Cramer J.
        • et al.
        The RSNA pediatric bone age machine learning challenge.
        Radiology. 2019; 290: 498-503
        • Martin D.D.
        • Deusch D.
        • Schweizer R.
        • et al.
        Clinical application of automated Greulich-Pyle bone age determination in children with short stature.
        Pediatr Radiol. 2009; 39: 598-607
        • Norman B.
        • Pedoia V.
        • Noworolski A.
        • et al.
        Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs.
        J Digit Imaging. 2018; https://doi.org/10.1007/s10278-018-0098-3
        • Quatman C.E.
        • Hettrich C.M.
        • Schmitt L.C.
        • et al.
        The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review.
        Am J Sports Med. 2011; 39: 1557-1568
        • Liu F.
        • Zhou Z.
        • Samsonov A.
        • et al.
        Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection.
        Radiology. 2018; 289: 160-169
        • Norman B.
        • Pedoia V.
        • Majumdar S.
        Use of 2D U-net convolutional neural networks for automated cartilage and meniscus segmentation of knee mr imaging data to determine relaxometry and morphometry.
        Radiology. 2018; 288: 177-185
        • Jamaludin A.
        • Kadir T.
        • Zisserman A.
        SpineNet: Automated classification and evidence visualization in spinal MRIs.
        Med Image Anal. 2017; 41: 63-73
      1. Kaggle. Kaggle: Your Home for Data Science.
        (Available at:) (Accessed January 21, 2019)
      2. NIHCC. National Institutes of Health Clinical Center: Chest XRay Dataset. CXR8.
        (Available at:) (Accessed January 21, 2019)
      3. NIH. Osteoarthritis Initiative. The Osteoarthritis Initiative.
        (Available at:) (Accessed January 21, 2019)
        • Rajpurkar P.
        • Irvin J.
        • Bagul A.
        • et al.
        MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs. ArXiv171206957 Phys.
        (Available at:) (Accessed April 2, 2019)
        • Hammernik K.
        • Klatzer T.
        • Kobler E.
        • et al.
        Learning a variational network for reconstruction of accelerated MRI data.
        Magn Reson Med. 2018; 79: 3055-3071
        • Zbontar J.
        • Knoll F.
        • Sriram A.
        • et al.
        fastMRI: An Open Dataset and Benchmarks for Accelerated MRI. ArXiv181108839 Phys Stat.
        (Available at:) (Accessed February 27, 2019)
      4. 16 Bit.
        (Available at:) (Accessed January 21, 2019)
      5. SKI10 : Home.
        (Available at:) (Accessed April 7, 2019)
        • Park S.H.
        Regulatory approval versus clinical validation of artificial intelligence diagnostic tools.
        Radiology. 2018; 288: 910-911
        • CBInsights
        The AI industry series: top healthcare AI trends to watch.
        (Available at:) (Accessed January 21, 2019)
        • Zhang B.
        • He X.
        • Ouyang F.
        • et al.
        Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.
        Cancer Lett. 2017; 403: 21-27
        • Nie D.
        • Zhang H.
        • Adeli E.
        • et al.
        3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients.
        Med Image Comput Comput Assist Interv. 2016; 9901: 212-220
      6. fastMRI Dataset.
        (Available at:) (Accessed January 21, 2019)
        • Lodwick G.S.
        A probabilistic approach to the diagnosis of bone tumors.
        Radiol Clin North Am. 1965; 3: 487-497