Advertisement
Review Article| Volume 2, P341-350, September 2020

Magnetoencephalography and Mild Traumatic Brain Injury

  • Amy L. Proskovec
    Affiliations
    Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9178, USA

    Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas, TX, USA
    Search for articles by this author
  • Bhavya R. Shah
    Affiliations
    Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9178, USA

    Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas, TX, USA
    Search for articles by this author
  • Frank F. Yu
    Affiliations
    Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9178, USA

    Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas, TX, USA
    Search for articles by this author
  • Michael Achilleos
    Affiliations
    Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9178, USA

    Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas, TX, USA
    Search for articles by this author
  • Joseph A. Maldjian
    Affiliations
    Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9178, USA

    Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas, TX, USA
    Search for articles by this author
  • Elizabeth M. Davenport
    Correspondence
    Corresponding author. Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542.
    Affiliations
    Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9178, USA

    Magnetoencephalography Center of Excellence, University of Texas Southwestern Medical Center, Dallas, TX, USA
    Search for articles by this author
      Conventional neuroimaging methods often fail to detect mild traumatic brain injury (mTBI).

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cassidy J.D.
        • Carroll L.J.
        • Peloso P.M.
        • et al.
        Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury.
        J Rehabil Med. 2004; : 28-60https://doi.org/10.1080/16501960410023732
        • Niogi S.N.
        • Mukherjee P.
        Diffusion tensor imaging of mild traumatic brain injury.
        J Head Trauma Rehabil. 2010; 25: 241-255
        • Lee R.R.
        • Huang M.
        Magnetoencephalography in the diagnosis of concussion.
        Prog Neurol Surg. 2014; 28: 94-111
        • Carroll L.J.
        • Cassidy J.D.
        • Holm L.
        • et al.
        Methodological issues and research recommendations for mild traumatic brain injury: the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury.
        J Rehabil Med. 2004; : 113-125https://doi.org/10.1080/16501960410023877
        • Giza C.C.
        • Hovda D.A.
        The neurometabolic cascade of concussion.
        J Athl Train. 2001; 36: 228-235
        • Huang M.X.
        • Nichols S.
        • Baker D.G.
        • et al.
        Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury.
        Neuroimage Clin. 2014; 5: 109-119
      1. National Center for Injury Prevention and Control. Report to congress on mild traumatic brain injury in the United States: Steps to prevent a serious public health problem. Atlanta (GA): Centers for Disease Control and Prevention. 2003.

        • Asken B.M.
        • DeKosky S.T.
        • Clugston J.R.
        • et al.
        Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review.
        Brain Imaging Behav. 2018; 12: 585-612
        • Kamins J.
        • Bigler E.
        • Covassin T.
        • et al.
        What is the physiological time to recovery after concussion? A systematic review.
        Br J Sports Med. 2017; 51: 935-940
        • Wilson T.W.
        • Heinrichs-Graham E.
        • Proskovec A.L.
        • et al.
        Neuroimaging with magnetoencephalography: A dynamic view of brain pathophysiology.
        Transl Res. 2016; 175: 17-36
        • Hämäläinen M.
        • Hari R.
        • Ilmoniemi R.J.
        • et al.
        Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain.
        Rev Mod Phys. 1993; 65: 413
        • Murakami S.
        • Okada Y.
        Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals.
        J Physiol. 2006; 575: 925-936
        • Hari R.
        • Salmelin R.
        Magnetoencephalography: From SQUIDs to neuroscience. Neuroimage 20th anniversary special edition.
        Neuroimage. 2012; 61: 386-396
        • Buzsaki G.
        • Draguhn A.
        Neuronal oscillations in cortical networks.
        Science. 2004; 304: 1926-1929
      2. Magnetoencephalography: from signals to dynamic cortical networks.
        in: Supek S. Aine C.J. Springer, Berlin2014
        • Lewine J.D.
        • Davis J.T.
        • Sloan J.H.
        • et al.
        Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma.
        AJNR Am J Neuroradiol. 1999; 20: 857-866
        • Lewine J.D.
        • Davis J.T.
        • Bigler E.D.
        • et al.
        Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI.
        J Head Trauma Rehabil. 2007; 22: 141-155
        • Huang M.X.
        • Theilmann R.J.
        • Robb A.
        • et al.
        Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients.
        J Neurotrauma. 2009; 26: 1213-1226
        • Huang M.X.
        • Nichols S.
        • Robb A.
        • et al.
        An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes.
        Neuroimage. 2012; 61: 1067-1082
        • Robb Swan A.
        • Nichols S.
        • Drake A.
        • et al.
        Magnetoencephalography Slow-Wave Detection in Patients with Mild Traumatic Brain Injury and Ongoing Symptoms Correlated with Long-Term Neuropsychological Outcome.
        J Neurotrauma. 2015; 32: 1510-1521
        • Lianyang L.
        • Pagnotta M.F.
        • Arakaki X.
        • et al.
        Brain activation profiles in mTBI: Evidence from combined resting-state EEG and MEG activity.
        Conf Proc IEEE Eng Med Biol Soc. 2015; 2015: 6963-6966
        • Huang M.X.
        • Swan A.R.
        • Quinto A.A.
        • et al.
        A pilot treatment study for mild traumatic brain injury: Neuroimaging changes detected by MEG after low-intensity pulse-based transcranial electrical stimulation.
        Brain Inj. 2017; 31: 1951-1963
        • Kaltiainen H.
        • Helle L.
        • Liljestrom M.
        • et al.
        Theta-band oscillations as an indicator of mild traumatic brain injury.
        Brain Topogr. 2018; 31: 1037-1046
        • Huang M.X.
        • Dale A.M.
        • Song T.
        • et al.
        Vector-based spatial-temporal minimum L1-norm solution for MEG.
        Neuroimage. 2006; 31: 1025-1037
        • Gloor P.
        • Ball G.
        • Schaul N.
        Brain lesions that produce delta waves in the EEG.
        Neurology. 1977; 27: 326-333
        • Ball G.J.
        • Gloor P.
        • Schaul N.
        The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats.
        Electroencephalogr Clin Neurophysiol. 1977; 43: 346-361
        • Schaul N.
        • Gloor P.
        • Ball G.
        • et al.
        The electromicrophysiology of delta waves induced by systemic atropine.
        Brain Res. 1978; 143: 475-486
        • Kandel E.R.
        • Schwartz J.H.
        • Jessell T.M.
        • et al.
        Principles of neural science. 5th edition. The McGraw-Hill Companies, 2013
        • Huang M.X.
        • Huang C.W.
        • Harrington D.L.
        • et al.
        Marked increases in resting-state MEG gamma-band activity in combat-related mild traumatic brain injury.
        Cereb Cortex. 2019; https://doi.org/10.1093/cercor/bhz087
        • Huang M.X.
        • Harrington D.L.
        • Robb Swan A.
        • et al.
        Resting-state magnetoencephalography reveals different patterns of aberrant functional connectivity in combat-related mild traumatic brain injury.
        J Neurotrauma. 2017; 34: 1412-1426
        • Li L.
        • Arakaki X.
        • Harrington M.
        • et al.
        Source connectivity analysis can assess recovery of acute mild traumatic brain injury patients.
        Conf Proc IEEE Eng Med Biol Soc. 2018; 2018: 3165-3168
        • Vakorin V.A.
        • Doesburg S.M.
        • da Costa L.
        • et al.
        Detecting Mild Traumatic Brain Injury Using Resting State Magnetoencephalographic Connectivity.
        PLoS Comput Biol. 2016; 12: e1004914
        • Dunkley B.T.
        • Da Costa L.
        • Bethune A.
        • et al.
        Low-frequency connectivity is associated with mild traumatic brain injury.
        Neuroimage Clin. 2015; 7: 611-621
        • Dunkley B.T.
        • Urban K.
        • Da Costa L.
        • et al.
        Default mode network oscillatory coupling is increased following concussion.
        Front Neurol. 2018; 9: 280
        • Antonakakis M.
        • Dimitriadis S.I.
        • Zervakis M.
        • et al.
        Altered rich-club and frequency-dependent subnetwork organization in mild traumatic brain injury: a MEG resting-state study.
        Front Hum Neurosci. 2017; 11: 416
        • Antonakakis M.
        • Dimitriadis S.I.
        • Zervakis M.
        • et al.
        Reconfiguration of dominant coupling modes in mild traumatic brain injury mediated by delta-band activity: A resting state MEG study.
        Neuroscience. 2017; 356: 275-286
        • Alhourani A.
        • Wozny T.A.
        • Krishnaswamy D.
        • et al.
        Magnetoencephalography-based identification of functional connectivity network disruption following mild traumatic brain injury.
        J Neurophysiol. 2016; 116: 1840-1847
        • Tarapore P.E.
        • Findlay A.M.
        • Lahue S.C.
        • et al.
        Resting state magnetoencephalography functional connectivity in traumatic brain injury.
        J Neurosurg. 2013; 118: 1306-1316
        • Rowland J.A.
        • Stapleton-Kotloski J.R.
        • Alberto G.E.
        • et al.
        Contrasting effects of posttraumatic stress disorder and mild traumatic brain injury on the whole-brain resting-state network: a magnetoencephalography study.
        Brain Connect. 2017; 7: 45-57
      3. Zouridakis G, Patidar U, Pollonini L, et al. in 2011 1st Middle East Conference on Biomedical Engineering. 396-399 (IEEE). Sharjah, Feb 22-25, 2011.

        • Antonakakis M.
        • Dimitriadis S.I.
        • Zervakis M.
        • et al.
        Mining cross-frequency coupling microstates from resting state MEG: An application to mild traumatic brain injury.
        Conf Proc IEEE Eng Med Biol Soc. 2016; 2016: 5513-5516
        • Antonakakis M.
        • Dimitriadis S.I.
        • Zervakis M.
        • et al.
        Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury.
        Int J Psychophysiol. 2016; 102: 1-11
        • Dimitriadis S.I.
        • Zouridakis G.
        • Rezaie R.
        • et al.
        Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury.
        Neuroimage Clin. 2015; 9: 519-531
        • da Costa L.
        • Robertson A.
        • Bethune A.
        • et al.
        Delayed and disorganised brain activation detected with magnetoencephalography after mild traumatic brain injury.
        J Neurol Neurosurg Psychiatry. 2015; 86: 1008-1015
        • Pang E.W.
        • Dunkley B.T.
        • Doesburg S.M.
        • et al.
        Reduced brain connectivity and mental flexibility in mild traumatic brain injury.
        Ann Clin Transl Neurol. 2016; 3: 124-131
        • Diwakar M.
        • Harrington D.L.
        • Maruta J.
        • et al.
        Filling in the gaps: anticipatory control of eye movements in chronic mild traumatic brain injury.
        Neuroimage Clin. 2015; 8: 210-223
        • Huang M.X.
        • Nichols S.
        • Robb-Swan A.
        • et al.
        MEG working memory n-back task reveals functional deficits in combat-related mild traumatic brain injury.
        Cereb Cortex. 2019; 29: 1953-1968
        • Shah-Basak P.P.
        • Urbain C.
        • Wong S.
        • et al.
        Concussion alters the functional brain processes of visual attention and working memory.
        J Neurotrauma. 2018; 35: 267-277
        • Kaltiainen H.
        • Liljestrom M.
        • Helle L.
        • et al.
        Mild traumatic brain injury affects cognitive processing and modifies oscillatory brain activity during attentional tasks.
        J Neurotrauma. 2019; 36: 2222-2232
        • Popescu M.
        • Hughes J.D.
        • Popescu E.A.
        • et al.
        Activation of dominant hemisphere association cortex during naming as a function of cognitive performance in mild traumatic brain injury: Insights into mechanisms of lexical access.
        Neuroimage Clin. 2017; 15: 741-752
        • Huang M.
        • Robb Swan A.
        • Angeles Quinto A.
        • et al.
        Resting-state MEG source imaging pilot study in children with mild traumatic brain injury.
        J Neurotrauma. 2019; https://doi.org/10.1089/neu.2019.6417
        • Uhlhaas P.J.
        • Singer W.
        The development of neural synchrony and large-scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis.
        Schizophr Bull. 2011; 37: 514-523
        • Davenport E.M.
        • Urban J.E.
        • Mokhtari F.
        • et al.
        Subconcussive impacts and imaging findings over a season of contact sports.
        Concussion. 2016; 1: CNC19
        • Davenport E.M.
        • Whitlow C.T.
        • Urban J.E.
        • et al.
        Abnormal white matter integrity related to head impact exposure in a season of high school varsity football.
        J Neurotrauma. 2014; 31: 1617-1624
        • Davenport E.M.
        • Apkarian K.
        • Whitlow C.T.
        • et al.
        Abnormalities in diffusional kurtosis metrics related to head impact exposure in a season of high school varsity football.
        J Neurotrauma. 2016; 33: 2133-2146