Advertisement
Review Article| Volume 2, P65-79, September 2020

Artificial Intelligence in Cardiopulmonary Imaging

      Artificial intelligence (AI), specifically deep learning, is improving at a rapid pace and is playing an increasingly vital role in the daily workflow of cardiothoracic radiologists.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wachter W.
        The digital doctor: hope, hype, and harm at the dawn of medicine’s computer age.
        McGraw-Hill Education, New York2017
        • Branstetter B.
        Practical imaging Informatics: foundations and applications for PACS professionals.
        Springer-Verlag, New York2010
        • Merriam-Webster
        Artificial intelligence. Merriam-Webster.
        (Available at:)
        • Ledley R.S.
        • Lusted L.B.
        Reasoning foundations of medical diagnosis; symbolic logic, probability, and value theory aid our understanding of how physicians reason.
        Science. 1959; 130: 9-21
        • Erickson B.J.
        • Korfiatis P.
        • Akkus Z.
        • et al.
        Machine Learning for Medical Imaging.
        Radiographics. 2017; 37: 505-515
        • Awan M.G.
        • Eslami T.
        • Saeed F.
        GPU-DAEMON: GPU algorithm design, data management & optimization template for array based big omics data.
        Comput Biol Med. 2018; 101: 163-173
      1. Krizhevsky A, Sutskever I, HG. ImageNet classification with deep convolutional neural networks. 25th Int Conf Neural Inf Process Syst Lake Tahoe, NV Neural Inf Process Syst. 2012;1:1097–105.

        • Goodfellow I.
        • Bengio Y.
        • Courville A.
        Deep learning.
        The MIT Press, Cambridge (MA)2016 (Available at:)
        • Lodwick G.S.
        • Keats T.E.
        • Dorst J.P.
        The coding of roentgen images for computer analysis as applied to lung cancer.
        Radiology. 1963; 81: 185-200
        • Tran G.S.
        • Nghiem T.P.
        • Nguyen V.T.
        • et al.
        Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss.
        J Healthc Eng. 2019; 2019https://doi.org/10.1155/2019/5156416
        • Annarumma M.
        • Withey S.J.
        • Bakewell R.J.
        • et al.
        Automated triaging of adult chest radiographs with deep artificial neural networks.
        Radiology. 2019; 291: 196-202
        • Lakhani P.
        • Sundaram B.
        Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks.
        Radiology. 2017; 284: 574-582
        • Jaeger S.
        • Karargyris A.
        • Candemir S.
        • et al.
        Automatic tuberculosis screening using chest radiographs.
        IEEE Trans Med Imaging. 2014; 33: 233-245https://doi.org/10.1109/TMI.2013.2284099
        • Baldwin D.R.
        • Callister M.E.J.
        • Guideline Development Group
        The British Thoracic Society guidelines on the investigation and management of pulmonary nodules.
        Thorax. 2015; 70 (Accesssed November 26, 2019): 794-798https://doi.org/10.1136/thoraxjnl-2015-207221
        • Paul R.
        • Hawkins S.H.
        • Schabath M.B.
        • et al.
        Predicting malignant nodules by fusing deep features with classical radiomics features.
        J Med Imaging. 2018; 5: 1https://doi.org/10.1117/1.jmi.5.1.011021
        • Causey J.L.
        • Zhang J.
        • Ma S.
        • et al.
        Highly accurate model for prediction of lung nodule malignancy with CT scans.
        Sci Rep. 2018; 8: 1-12https://doi.org/10.1038/s41598-018-27569-w
        • Hawkins S.H.
        • Korecki J.N.
        • Balagurunathan Y.
        • et al.
        Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features.
        IEEE Access. 2014; 2: 1418-1426
        • Paul R.
        • Hawkins S.H.
        • Balagurunathan Y.
        • et al.
        Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma.
        Tomography. 2016; 2: 388-395
        • Hosny A.
        • Parmar C.
        • Coroller T.P.
        • et al.
        Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study.
        PLoS Med. 2018; 15: 1-25
        • Raghu G.
        • Collard H.R.
        • Egan J.J.
        • et al.
        An Official ATS/ERS/JRS/ALAT Statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management.
        Am J Respir Crit Care Med. 2011; 183: 788-824
        • Lynch D.A.
        • Sverzellati N.
        • Travis W.D.
        • et al.
        Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper.
        Lancet Respir Med. 2018; 6: 138-153
        • Walsh S.L.F.
        • Calandriello L.
        • Sverzellati N.
        • et al.
        Interobserver agreement for the ATS/ERS/JRS/ALAT criteria for a UIP pattern on CT.
        Thorax. 2016; 71: 45-51
        • Walsh S.L.F.
        • Calandriello L.
        • Silva M.
        • et al.
        Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study.
        Lancet Respir Med. 2018; 6: 837-845
        • Christe A.
        • Peters A.A.
        • Drakopoulos D.
        • et al.
        Computer-Aided Diagnosis of Pulmonary Fibrosis Using Deep Learning and CT Images.
        Invest Radiol. 2019; 54: 627-632
        • Ghesu F.C.
        • Georgescu B.
        • Zheng Y.
        • et al.
        Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans.
        IEEE Trans Pattern Anal Mach Intell. 2019; 41: 176-189
        • Dormer J.D.
        • Halicek M.
        • Ma L.
        • et al.
        Convolutional neural networks for the detection of diseased hearts using CT images and left atrium patches.
        Proc SPIE Int Soc Opt Eng. 2018; : 107https://doi.org/10.1117/12.2293548
        • Zheng Y.
        • Wang T.
        • John M.
        • et al.
        Multi-part left atrium modeling and segmentation in C-arm CT volumes for atrial fibrillation ablation.
        Med Image Comput Assist Interv. 2011; 14: 487-495
        • Zreik M.
        • Lessmann N.
        • van Hamersvelt R.W.
        • et al.
        Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis.
        Med Image Anal. 2018; 44: 72-85
        • Sedghi Gamechi Z.
        • Bons L.R.
        • Giordano M.
        • et al.
        Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT.
        Eur Radiol. 2019; 29: 4613-4623
      2. Ather S, Arteta C, Dowson N, et al. Nodule size measurement: automatic or human-which is better for predicting lung cancer in a brock model? In: RSNA 2018. Chicago, IL, 2018. Available at: http://archive.rsna.org/2018/18022203.html. Accessed May 15, 2020.

        • Bian Z.
        • Charbonnier J.P.
        • Liu J.
        • et al.
        Small airway segmentation in thoracic computed tomography scans: a machine learning approach.
        Phys Med Biol. 2018; 63: 155024
        • Rubin G.D.
        Lung Nodule and Cancer Detection in CT Screening Geoffrey.
        J Thorac Imaging. 2016; 30: 130-138
        • Armato S.G.
        • Li F.
        • Giger M.L.
        • et al.
        Lung cancer: Performance of automated lung nodule detection applied to cancers missed in a CT screening program.
        Radiology. 2002; 225: 685-692
        • Setio A.A.A.
        • Traverso A.
        • de Bel T.
        • et al.
        Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge.
        Med Image Anal. 2017; 42: 1-13
        • Armato S.G.
        • McLennan G.
        • Bidaut L.
        • et al.
        The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans.
        Med Phys. 2011; 38: 915-931
        • Niemeijer M.
        • Loog M.
        • Abramoff M.D.
        • et al.
        On combining computer-aided detection systems.
        IEEE Trans Med Imaging. 2011; 30: 215-223
        • Liu K.
        • Li Q.
        • Ma J.
        • et al.
        Evaluating a Fully Automated Pulmonary Nodule Detection Approach and Its Impact on Radiologist Performance.
        Radiol Artif Intell. 2019; 1: e180084
        • Lo S.C.B.
        • Freedman M.T.
        • Gillis L.B.
        • et al.
        Computer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed function.
        Am J Roentgenol. 2018; 210: 480-488
        • Ciompi F.
        • Chung K.
        • Van Riel S.J.
        • et al.
        Towards automatic pulmonary nodule management in lung cancer screening with deep learning.
        Sci Rep. 2017; 7: 1-10
        • Shaffie A.
        • Soliman A.
        • Fraiwan L.
        • et al.
        A generalized deep learning-based diagnostic system for early diagnosis of various types of pulmonary nodules.
        Technol Cancer Res Treat. 2018; 17: 1-9
        • Jin C.
        • Feng J.
        • Wang L.
        • et al.
        Left atrial appendage segmentation and quantitative assisted diagnosis of atrial fibrillation based on fusion of temporal-spatial information.
        Comput Biol Med. 2018; 96: 52-68
        • Curiale A.H.
        • Colavecchia F.D.
        • Mato G.
        Automatic quantification of the LV function and mass: A deep learning approach for cardiovascular MRI.
        Comput Methods Programs Biomed. 2019; 169: 37-50
        • Sandstedt M.
        • Henriksson L.
        • Janzon M.
        • et al.
        Evaluation of an AI-based, automatic coronary artery calcium scoring software.
        Eur Radiol. 2019; https://doi.org/10.1007/s00330-019-06489-x
        • Schuhbaeck A.
        • Dey D.
        • Otaki Y.
        • et al.
        Interscan reproducibility of quantitative coronary plaque volume and composition from CT coronary angiography using an automated method.
        Eur Radiol. 2014; 24: 2300-2308
        • Obaid D.R.
        • Calvert P.A.
        • Gopalan D.
        • et al.
        Atherosclerotic plaque composition and classification identified by coronary computed tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology.
        Circ Cardiovasc Imaging. 2013; 6: 655-664
        • Masuda T.
        • Nakaura T.
        • Funama Y.
        • et al.
        Machine-learning integration of CT histogram analysis to evaluate the composition of atherosclerotic plaques: Validation with IB-IVUS.
        J Cardiovasc Comput Tomogr. 2019; 13: 163-169
        • Hill D.
        • Lim M.
        Fractional flow reserve - StatPearls.
        in: StatPearls. StatPearls Publishing, Treasure Island (FL)2019 (Available at:) (Accessed May 15, 2020)
        • Hu X.
        • Yang M.
        • Han L.
        • et al.
        Diagnostic performance of machine-learning-based computed fractional flow reserve (FFR) derived from coronary computed tomography angiography for the assessment of myocardial ischemia verified by invasive FFR.
        Int J Cardiovasc Imaging. 2018; 34: 1987-1996
        • Dunnmon J.A.
        • Yi D.
        • Langlotz C.P.
        • et al.
        Assessment of convolutional neural networks for automated classification of chest radiographs.
        Radiology. 2019; 290: 537-544
        • Seah J.C.Y.
        • Tang J.S.N.
        • Kitchen A.
        • et al.
        Chest radiographs in congestive heart failure: visualizing neural network learning.
        Radiology. 2019; 290: 514-522
        • Lakhani P.
        Deep convolutional neural networks for endotracheal tube position and X-ray image classification: challenges and opportunities.
        J Digit Imaging. 2017; 30: 460-468
        • Chen S.
        • Zhang M.
        • Yao L.
        • et al.
        Endotracheal tubes positioning detection in adult portable chest radiography for intensive care unit.
        Int J Comput Assist Radiol Surg. 2016; 11: 2049-2057
        • Mukherjee S.
        A.I. Versus M.D. - What happens when diagnosis is automated?.
        New Yorker. 2017; (Ann Med)
        • Pesapane F.
        • Codari M.
        • Sardanelli F.
        Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine.
        Eur Radiol Exp. 2018; 2: 35