Advertisement
Review Article| Volume 2, P37-63, September 2020

Download started.

Ok

Advances in Imaging of Adult Congenital Heart Disease

      Iterative reconstruction and metal artifact reduction can improve image quality or reduce radiation dose for cardiac computed tomography (CT) scans and should be used when possible.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoffman J.I.
        • Kaplan S.
        The incidence of congenital heart disease.
        J Am Coll Cardiol. 2002; 39: 1890-1900
        • Gilboa S.M.
        • Devine O.J.
        • Kucik J.E.
        • et al.
        Congenital Heart Defects in the United States: estimating the magnitude of the affected population in 2010.
        Circulation. 2016; 134: 101-109
        • Hernanz-Schulman M.
        “Pediatric CT and image gently” ImageWisely.org.
        (Available at:) (Accessed December 03, 2019)
        • Halliburton S.S.
        • Tanabe Y.
        • Partovi S.
        • et al.
        The role of advanced reconstruction algorithms in cardiac CT.
        Cardiovasc Diagn Ther. 2017; 7: 527-538
        • Puchner S.B.
        • Ferencik M.
        • Maehara A.
        • et al.
        Iterative image reconstruction improves the accuracy of automated plaque burden assessment in coronary CT angiography: a comparison with intravascular ultrasound.
        Am J Roentgenol. 2017; 208: 777-784
        • Nelson R.C.
        • Feuerlein S.
        • Boll D.T.
        New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages?.
        J Cardiovasc Comput Tomogr. 2011; 5: 286-292
      1. “FDA Clears GE's deep learning image reconstruction engine” imaging technology news. 2019 (Available at:) (Accessed December 07, 2019)
      2. “Canon medical receives FDA clearance for AiCE reconstruction technology for CT” Imaging Technology News. 2019 (Available at:) (Accessed December 07, 2019)
        • Wu D.
        • Kim K.
        • El Fakhri G.
        • et al.
        Iterative low-dose CT reconstruction with priors trained by artificial neural network.
        IEEE Trans Med Imaging. 2017; 36: 2479-2486
        • Akagi M.
        • Nakamura Y.
        • Higaki T.
        • et al.
        Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT.
        Eur Radiol. 2019; 29: 6163-6171
        • Katsura M.
        • Sato J.
        • Akahane M.
        • et al.
        Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists.
        Radiographics. 2018; 38: 450-461
        • Kidoh M.
        • Utsunomiya D.
        • Oda S.
        • et al.
        CT venography after knee replacement surgery: comparison of dual-energy CT-based monochromatic imaging and single-energy metal artifact reduction techniques on a 320-row CT scanner.
        Acta Radiol Open. 2017; 6 (2058460117693463)
        • Zhang Y.
        • Yu H.
        Convolutional neural network based metal artifact reduction in X-ray computed tomography.
        IEEE Trans Med Imaging. 2018; 37: 1370-1381
        • Fulton D.R.
        • Fyler D.C.
        D-transposition of the great arteries.
        in: Keane J.F. Lock J.E. Fyler D.C. Nadas’ pediatric cardiology. 2nd edition. Saunders Elsevier, Philadelphia2006: 645
        • van der Palen R.L.
        • Westenberg J.J.
        • Hazekamp M.G.
        • et al.
        Four-dimensional flow cardiovascular magnetic resonance for the evaluation of the atrial baffle after Mustard repair.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 353
        • Marc Kachelrie β
        • German Cancer Research Center
        “Computed Tomography”, The 6th international conference on Image Formation in X-Ray Computed Tomography.
        (Available at:) (Accessed January 3, 2020)
        • Litmanovich D.E.
        • Tack D.M.
        • Shahrzad M.
        • et al.
        Dose reduction in cardiothoracic CT: review of currently available methods.
        Radiographics. 2014; 34: 1469-1489
        • Albrecht M.H.
        • Nance J.W.
        • Schoepf U.J.
        • et al.
        Diagnostic accuracy of low and high tube voltage coronary CT angiography using an X-ray tube potential-tailored contrast medium injection protocol.
        Eur Radiol. 2018; 28: 2134-2142
        • Graff C.G.
        • Sidky E.Y.
        Compressive sensing in medical imaging.
        Appl Opt. 2015; 54: C23-C44
        • Jaspan O.N.
        • Fleysher R.
        • Lipton M.L.
        Compressed sensing MRI: a review of the clinical literature.
        Br J Radiol. 2015; 88: 20150487
        • Lustig M.
        • Donoho D.
        • Pauly J.M.
        Sparse MRI: the application of compressed sensing for rapid MR imaging.
        Magn Reson Med. 2007; 58: 1182-1195
        • Hsiao A.
        • Lustig M.
        • Alley M.T.
        • et al.
        Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI.
        Am J Roentgenol. 2012; 198: W250-W259
        • Carlsson M.
        • Toger J.
        • Kanski M.
        • et al.
        Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or kt BLAST: head to head comparison and validation at 1.5 T and 3 T.
        J Cardiovasc Magn Reson. 2011; 13: 55
        • Hanneman K.
        • Sivagnanam M.
        • Nguyen E.T.
        • et al.
        Magnetic resonance assessment of pulmonary (Qp) to systemic (Qs) flows using 4D phase-contrast imaging: pilot study comparison with standard through-plane 2D phase-contrast imaging.
        Acad Radiol. 2014; 21: 1002-1008
        • Nordmeyer S.
        • Riesenkampff E.
        • Messroghli D.
        • et al.
        Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow.
        J Magn Reson Imaging. 2013; 37: 208-216
        • Schulz-Menger J.
        • Bluemke D.A.
        • Bremerich J.
        • et al.
        Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing.
        J Cardiovasc Magn Reson. 2013; 15: 35
        • Jarvis K.
        • Schnell S.
        • Barker A.
        • et al.
        4D Flow MRI improves assessment of aortic and pulmonary peak velocities in patients with D-transposition of great arteries following arterial switch operation.
        Circulation. 2014; 130: A16422
        • da Silveira J.S.
        • Smyke M.
        • Rich A.V.
        • et al.
        Quantification of aortic stenosis diagnostic parameters: comparison of fast 3 direction and 1 direction phase contrast CMR and transthoracic echocardiography.
        J Cardiovasc Magn Reson. 2017; 19: 35
        • Walsh E.P.
        • Cecchin F.
        Arrhythmias in adult patients with congenital heart disease.
        Circulation. 2007; 115: 534-545
        • Ferreira A.M.
        • Costa F.
        • Tralhão A.
        • et al.
        MRI-conditional pacemakers: current perspectives.
        Med Devices (Auckl). 2014; 7: 115-124
        • Russo R.J.
        • Costa H.S.
        • Silva P.D.
        • et al.
        Assessing the risks associated with mri in patients with a pacemaker or defibrillator.
        N Engl J Med. 2017; 376: 755-764
        • Muthalaly R.G.
        • Nerlekar N.
        • Ge Y.
        • et al.
        MRI in patients with cardiac implantable electronic devices.
        Radiology. 2018; 289: 281-292
        • Nazarian S.
        • Roguin A.
        • Zviman M.M.
        • et al.
        Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 tesla.
        Circulation. 2006; 114: 1277-1284
        • Bhandiwad A.R.
        • Cummings K.W.
        • Crowley M.
        • et al.
        Cardiovascular magnetic resonance with an MR compatible pacemaker.
        J Cardiovasc Magn Reson. 2013; 15: 18
        • Petitjean C.
        • Dacher J.N.
        A review of segmentation methods in short axis cardiac MR images.
        Med Image Anal. 2011; 15: 169-184
        • Bai W.
        • Sinclair M.
        • Tarroni G.
        • et al.
        Automated cardiovascular magnetic resonance image analysis with fully convolutional networks.
        J Cardiovasc Magn Reson. 2018; 20: 65
        • Fahmy A.S.
        • El-Rewaidy H.
        • Nezafat M.
        • et al.
        Automated analysis of cardiovascular magnetic resonance myocardial native T 1 mapping images using fully convolutional neural networks.
        J Cardiovasc Magn Reson. 2019; 21: 7
        • Fahmy A.S.
        • Rausch J.
        • Neisius U.
        • et al.
        Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks.
        JACC Cardiovasc Imaging. 2018; 11: 1917-1918
        • Slomka P.J.
        • Dey D.
        • Sitek A.
        • et al.
        Cardiac imaging: working towards fully-automated machine analysis & interpretation.
        Expert Rev Med Devices. 2017; 14: 197-212
      3. “Circle cardiovascular imaging deep learning story” circle cardiovascular imaging.
        (Available at:) (Accessed January 17, 2020)
        • Arafati A.
        • Hu P.
        • Finn J.P.
        • et al.
        Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need.
        Cardiovasc Diagn Ther. 2019; 9: S310-S325
      4. “Medical applications of 3D Printing” U.S. Food and Drug Administration.
        (Available at:) (Accessed December 23, 2019)
        • Grossman D.
        “An entire 3D-printed Neighborhood will Be constructed in 24 Hours” popular Mechanics.
        2019 (Available at:) (Accessed January 17, 2020)
        • Jackson B.
        “Researchers Achieve Breakthrough for Industrial-scale Nano 3D printing” , 3D printing Industry.
        2019 (Available at:) (Accessed January 17, 2020)
        • Seckeler W.S.
        3D printing in congenital heart disease: how it can change management today and tomorrow.
        American College of Cardiology, Washington, DC2018 (Available at: https://www.acc.org/latest-in-cardiology/articles/2018/09/13/08/15/3d-printing-in-congenital-heart-disease. Accessed January 17, 2020)
        • Anwar S.
        • Singh G.K.
        • Miller J.
        • et al.
        3D printing is a transformative technology in congenital heart disease.
        JACC Basic Transl Sci. 2018; 3: 294-312
        • Vialva T.
        American Medical Association enacts reimbursement codes for 3D printing services in healthcare.
        3D Printing Industry, London2019 (Available at:) (Accessed January 17, 2020)
        • Marelli A.J.
        • Mackie A.S.
        • Ionescu-Ittu R.
        • et al.
        Congenital heart disease in the general population: changing prevalence and age distribution.
        Circulation. 2007; 115: 163-172
        • Al Habib H.F.
        • Jacobs J.P.
        • Mavroudis C.
        • et al.
        Contemporary patterns of management of tetralogy of Fallot: data from the Society of Thoracic Surgeons Database.
        Ann Thorac Surg. 2010; 90: 813-819
        • Sen D.G.
        • Najjar M.
        • Yimaz B.
        • et al.
        Aiming to preserve pulmonary valve function in tetralogy of fallot repair: comparing a new approach to traditional management.
        Pediatr Cardiol. 2016; 37: 818-825
        • Clarke D.R.
        • Campbell D.N.
        • Pappas G.
        Pulmonary allograft conduit repair of tetralogy of Fallot. An alternative to transannular patch repair.
        J Thorac Cardiovasc Surg. 1989; 98: 730-736
        • Valente A.M.
        • Geva T.
        How to image repaired tetralogy of fallot.
        Circ Cardiovasc Imaging. 2017; 10: e004270
        • Oosterhof T.
        • van Straten A.
        • Vliegen H.W.
        • et al.
        Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance.
        Circulation. 2007; 116: 545-551
        • Valsangiacomo Buechel E.R.
        • Mertens L.L.
        Imaging the right heart: the use of integrated multimodality imaging.
        Eur Heart J. 2012; 33: 949-960
        • Crean A.M.
        • Maredia N.
        • Ballard G.
        • et al.
        3D Echo systematically underestimates right ventricular volumes compared to cardiovascular magnetic resonance in adult congenital heart disease patients with moderate or severe RV dilatation.
        J Cardiovasc Magn Reson. 2011; 13: 78
        • Kjaergaard J.
        • Petersen C.L.
        • Kjaer A.
        • et al.
        Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI.
        Euro J Echocardiogr. 2006; 7: 430-438
        • Geva T.
        Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support.
        J Cardiovasc Magn Reson. 2011; 13: 9
        • Kilner P.J.
        • Geva T.
        • Kaemmerer H.
        • et al.
        Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology.
        Eur Heart J. 2010; 31: 794-805
        • Therrien J.
        • Provost Y.
        • Merchant N.
        • et al.
        Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair.
        Am J Cardiol. 2005; 95: 779-782
        • Lee C.
        • Kim Y.M.
        • Lee C.H.
        • et al.
        Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement.
        J Am Coll Cardiol. 2012; 60: 1005-1014
        • Blalock S.E.
        • Banka P.
        • Geva T.
        • et al.
        Interstudy variability in cardiac magnetic resonance imaging measurements of ventricular volume, mass, and ejection fraction in repaired tetralogy of Fallot: a prospective observational study.
        J Magn Reson Imaging. 2013; 38: 829-835
        • Gnanappa G.K.
        • Rashid I.
        • Celermajer D.
        • et al.
        Reproducibility of Cardiac Magnetic Resonance Imaging (CMRI)-derived right ventricular parameters in repaired Tetralogy of Fallot (ToF).
        Heart Lung Circ. 2018; 27: 381-385
        • Ahmed S.
        • Johnson P.T.
        • Fishman E.K.
        • et al.
        Role of multidetector CT in assessment of repaired tetralogy of Fallot.
        Radiographics. 2013; 33: 1023-1036
      5. “FDA expands TAVR indication to low-risk patients” ACC News Story. American College of Cardiology, Washington, DC2019 (Available at: https://www.acc.org/latest-in-cardiology/articles/2019/08/16/13/49/fda-expands-tavr-indication-to-low-risk-patients. Accessed December 24, 2019)
        • Pozzi M.
        • Trivedi D.B.
        • Kitchiner D.
        • et al.
        Tetralogy of Fallot: what operation, at which age.
        Eur J Cardiothoracic Surg. 2000; 17: 631-636
        • Jones M.I.
        • Qureshi S.A.
        Recent advances in transcatheter management of pulmonary regurgitation after surgical repair of tetralogy of Fallot.
        F1000Res. 2018; 7 (Faculty Rev-679): F1000
      6. Gillespie MJ. “Transcatheter pulmonary valve shows promise at 2 years in early feasibility study”. Abstracts: Best of the Best. Presented at: Society for Cardiovascular Angiography and Interventions Scientific Sessions; April 25-28, 2018; San Diego.

        • Gillespie M.J.
        • Benson L.N.
        • Bergersen L.
        • et al.
        Patient selection process for the harmony transcatheter pulmonary valve early feasibility study.
        Am J Card. 2017; 120: 1387-1392
        • Samánek M.
        Congenital heart malformations: prevalence, severity, survival, and quality of life.
        Cardiol Young. 2000; 10: 179-185
        • Unolt M.
        • Putotto C.
        • Silvestri L.M.
        • et al.
        Transposition of great arteries: new insights into the pathogenesis.
        Front Pediatr. 2013; 1: 11
        • Hiremath G.
        • Natarajan G.
        • Math D.
        • et al.
        Impact of balloon atrial septostomy in neonates with transposition of great arteries.
        J Perinatol. 2011; 31: 494-499
        • Konstantinov I.E.
        • Alexi-Meskishvili V.V.
        • Williams W.G.
        • et al.
        Atrial switch operation: past, present, and future.
        Ann Thorac Surg. 2004; 77: 2250-2258
        • Devaney E.J.
        • Charpie J.R.
        • Ohye R.G.
        • et al.
        Combined arterial switch and Senning operation for congenitally corrected transposition of the great arteries: patient selection and intermediate results.
        J Thorac Cardiovasc Surg. 2003; 125: 500-507
        • Lopez L.
        • Cohen M.S.
        • Anderson R.H.
        • et al.
        Unnatural history of the right ventricle in patients with congenitally malformed hearts.
        Cardiol Young. 2010; 20: 107-112
        • Kral Kollars C.A.
        • Gelehrter S.
        • Bove E.L.
        • et al.
        Effects of morphologic left ventricular pressure on right ventricular geometry and tricuspid valve regurgitation in patients with congenitally corrected transposition of the great arteries.
        Am J Cardiol. 2010; 105: 735-739
        • Helbing W.
        • Hansen B.
        • Ottenkamp I.
        • et al.
        Long-term results of atrial correction for transposition of the great arteries. Comparison of Mustard and Senning operations.
        J Thorac Cardiovasc Surg. 1994; 108: 363-372
        • Gelatt M.
        • Hamilton R.M.
        • McCrindle B.W.
        • et al.
        Arrhythmia and mortality after the Mustard procedure: a 30-year single-center experience.
        J Am Coll Cardiol. 1997; 29: 194-201
        • Bottega N.A.
        • Silversides C.K.
        • Oechslin E.N.
        • et al.
        Stenosis of the superior limb of the systemic venous baffle following a Mustard procedure: an under-recognized problem.
        Int J Cardiol. 2012; 154: 32-37
        • Lu J.C.
        • Dorfman A.L.
        • Attili A.K.
        • et al.
        Evaluation with cardiovascular MR imaging of baffles and conduits used in palliation or repair of congenital heart disease.
        Radiographics. 2012; 32: E107-E127
        • Chin A.J.
        • Sanders S.P.
        • Norwood W.I.
        • et al.
        Two-dimensional echocardiographic localization of residual atrial shunts after the Senning procedure.
        Am J Cardiol. 1985; 55: 1238-1239
        • Lecompte Y.
        • Zannini L.
        • Hazan E.
        • et al.
        Anatomic correction of transposition of the great arteries.
        J Thorac Cardiovasc Surg. 1981; 82: 629-631
        • Talwar s
        • Muthukkumaran S.
        • Choudhary S.K.
        • et al.
        The expanding indications for the Lecompte maneuver.
        World J Pediatr Congenit Heart Surg. 2014; 5: 291-296
        • Tobler D.
        • Williams W.G.
        • Jegatheeswaran A.
        • et al.
        Cardiac outcomes in young adult survivors of the arterial switch operation for transposition of the great arteries.
        J Am Coll Cardiol. 2010; 56: 58-64
        • Jarvis K.
        • Vonder M.
        • Barker A.J.
        • et al.
        Hemodynamic evaluation in patients with transposition of the great arteries after the arterial switch operation: 4D flow and 2D phase contrast cardiovascular magnetic resonance compared with Doppler echocardiography.
        J Cardiovasc Magn Reson. 2016; 18: 59
        • Jeon M.H.
        • Choe Y.H.
        • Cho S.J.
        • et al.
        Planimetric measurement of the regurgitant orifice area using multidetector CT for aortic regurgitation: a comparison with the use of echocardiography.
        Korean J Radiol. 2010; 11: 169-177