Advertisement
Review Article| Volume 1, P193-214, September 2019

High-Resolution Magnetic Resonance Vessel Wall Imaging in Intracranial Atherosclerotic Disease

  • Ramez N. Abdalla
    Affiliations
    Department of Radiology, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA

    Department of Radiology, Ain Shams University, Cairo, Egypt
    Search for articles by this author
  • Donald R. Cantrell
    Affiliations
    Department of Radiology, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA

    Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA
    Search for articles by this author
  • Alireza Vali
    Affiliations
    Department of Radiology, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA
    Search for articles by this author
  • Michael C. Hurley
    Affiliations
    Department of Radiology, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA

    Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA
    Search for articles by this author
  • Ali Shaibani
    Affiliations
    Department of Radiology, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA

    Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA
    Search for articles by this author
  • Timothy J. Carroll
    Affiliations
    Department of Radiology, University of Chicago, 5841 S Maryland, Chicago, IL 60637, USA
    Search for articles by this author
  • Sameer A. Ansari
    Correspondence
    Corresponding author. Department of Radiology, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927.
    Affiliations
    Department of Radiology, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA

    Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA

    Department of Neurology, Northwestern University, Feinberg School of Medicine, 676 North St. Clair Street, Suite 800, Chicago, IL 60611-2927, USA
    Search for articles by this author
      Overview on the epidemiology, risk factors, risk of recurrence and management of intracranial atherosclerotic disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gorelick Philip B.
        • Wong K.S.
        • Bae H.J.
        • et al.
        Large artery intracranial occlusive disease: a large worldwide burden but a relatively neglected frontier.
        Stroke. 2008; 39: 2396-2399
        • Benjamin E.J.
        • Blaha M.J.
        • Chiuve S.E.
        • et al.
        Heart disease and stroke statistics-2017 update: a report from the American Heart Association.
        Circulation. 2017; 135: e146-e603
        • Kasner Scott E.
        • Chimowitz M.I.
        • Lynn M.J.
        • et al.
        Predictors of ischemic stroke in the territory of a symptomatic intracranial arterial stenosis.
        Circulation. 2006; 113: 555-563
        • Sacco R.L.
        • Kargman D.E.
        • Gu Q.
        • et al.
        Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study.
        Stroke. 1995; 26: 14-20
        • Caplan L.R.
        • Gorelick P.B.
        • Hier D.B.
        Race, sex and occlusive cerebrovascular disease: a review.
        Stroke. 1986; 17: 648-655
        • Chimowitz M.I.
        • Kokkinos J.
        • Strong J.
        • et al.
        The Warfarin-Aspirin symptomatic intracranial disease study.
        Neurology. 1995; 45: 1488-1493
        • Suri M.F.
        • Johnston S.C.
        Epidemiology of intracranial stenosis.
        J Neuroimaging. 2009; 19: 11s-16s
        • Bos D.
        • van der Rijk M.J.
        • Geeraedts T.E.
        • et al.
        Intracranial carotid artery atherosclerosis: prevalence and risk factors in the general population.
        Stroke. 2012; 43: 1878-1884
        • White H.
        • Boden-Albala B.
        • Wang C.
        • et al.
        Ischemic stroke subtype incidence among whites, blacks, and Hispanics: the Northern Manhattan Study.
        Circulation. 2005; 111: 1327-1331
        • Wong K.S.
        • Huang Y.N.
        • Gao S.
        • et al.
        Intracranial stenosis in Chinese patients with acute stroke.
        Neurology. 1998; 50: 812-813
        • Wong Ka S.
        • Li H.
        • Chan Y.L.
        • et al.
        Use of transcranial doppler ultrasound to predict outcome in patients with intracranial large-artery occlusive disease.
        Stroke. 2000; 31: 2641-2647
        • Huang Y.N.
        • Gao S.
        • Li S.W.
        • et al.
        Vascular lesions in Chinese patients with transient ischemic attacks.
        Neurology. 1997; 48: 524-525
        • De Silva D.A.
        • Woon F.P.
        • Lee M.P.
        • et al.
        South Asian patients with ischemic stroke: intracranial large arteries are the predominant site of disease.
        Stroke. 2007; 38: 2592-2594
        • Kaul S.
        • Sunitha P.
        • Suvarna A.
        • et al.
        Subtypes of ischemic stroke in a metropolitan city of South India (one year data from a hospital based stroke registry).
        Neurol India. 2002; 50: S8-S15
        • Wong K.S.
        • Ng P.W.
        • Tang A.
        • et al.
        Prevalence of asymptomatic intracranial atherosclerosis in high-risk patients.
        Neurology. 2007; 68: 2035-2038
        • Uehara T.
        • Tabuchi M.
        • Mori E.
        Frequency and clinical correlates of occlusive lesions of cerebral arteries in Japanese patients without stroke. Evaluation by MR angiography.
        Cerebrovasc Dis. 1998; 8: 267-272
        • Leung S.Y.
        • Ng T.H.
        • Yuen S.T.
        • et al.
        Pattern of cerebral atherosclerosis in Hong Kong Chinese. Severity in intracranial and extracranial vessels.
        Stroke. 1993; 24: 779-786
        • Qureshi A.I.
        • Caplan L.R.
        Intracranial atherosclerosis.
        Lancet. 2014; 383: 984-998
        • Huang H.W.
        • Guo M.H.
        • Lin R.J.
        • et al.
        Prevalence and risk factors of middle cerebral artery stenosis in asymptomatic residents in Rongqi County, Guangdong.
        Cerebrovasc Dis. 2007; 24: 111-115
        • Bae H.J.
        • Lee J
        • Park J.M.
        • et al.
        Risk factors of intracranial cerebral atherosclerosis among asymptomatics.
        Cerebrovasc Dis. 2007; 24: 355-360
        • Tsivgoulis G.
        • Vadikolias K.
        • Heliopoulos I.
        • et al.
        Prevalence of symptomatic intracranial atherosclerosis in Caucasians: a prospective, multicenter, transcranial Doppler study.
        J Neuroimaging. 2014; 24: 11-17
        • Ovbiagele B.
        • Saver J.L.
        • Lynn M.J.
        • et al.
        Impact of metabolic syndrome on prognosis of symptomatic intracranial atherostenosis.
        Neurology. 2006; 66: 1344-1349
        • Park J.H.
        • Kwon H.M.
        • Roh J.K.
        Metabolic syndrome is more associated with intracranial atherosclerosis than extracranial atherosclerosis.
        Eur J Neurol. 2007; 14: 379-386
        • Bang O.Y.
        • Lee M.A.
        • Lee J.H.
        • et al.
        Association of the metabolic syndrome with intracranial atherosclerotic stroke.
        Neurology. 2005; 65: 296-298
        • Hallevi H.
        • Chernyshev O.Y.
        • El Khoury R.
        • et al.
        Intracranial atherosclerosis is associated with progression of neurological deficit in subcortical stroke.
        Cerebrovasc Dis. 2012; 33: 64-68
        • Kang D.W.
        • Kwon S.U.
        • Yoo S.H.
        • et al.
        Early recurrent ischemic lesions on diffusion-weighted imaging in symptomatic intracranial atherosclerosis.
        Arch Neurol. 2007; 64: 50-54
        • Qureshi A.I.
        • Ziai W.C.
        • Yahia A.M.
        • et al.
        Stroke-free survival and its determinants in patients with symptomatic vertebrobasilar stenosis: a multicenter study.
        Neurosurgery. 2003; 52 ([discussion: 1039–40]): 1033-1039
        • Kozak O.
        • Tariq N.
        • Suri M.F.
        • et al.
        High risk of recurrent ischemic events among patients with deferred intracranial angioplasty and stent placement for symptomatic intracranial atherosclerosis.
        Neurosurgery. 2011; 69 ([discussion: 342–3]): 334-342
        • Wong K.S.
        • Li H.
        Long-term mortality and recurrent stroke risk among Chinese stroke patients with predominant intracranial atherosclerosis.
        Stroke. 2003; 34: 2361-2366
        • Brott T.G.
        • Hobson 2nd, R.W.
        • Howard G.
        • et al.
        Stenting versus endarterectomy for treatment of carotid-artery stenosis.
        N Engl J Med. 2010; 363: 11-23
        • Ferguson Gary G.
        • Eliasziw M.
        • Barr H.W.
        • et al.
        The North American symptomatic carotid endarterectomy trial: surgical results in 1415 patients.
        Stroke. 1999; 30: 1751-1758
        • Chimowitz M.I.
        • Lynn M.J.
        • Derdeyn C.P.
        • et al.
        • SAMMPRIS Trial Investigators
        Stenting versus aggressive medical therapy for intracranial arterial stenosis.
        N Engl J Med. 2011; 365: 993-1003
        • Zaidat O.O.
        • Fitzsimmons B.F.
        • Woodward B.K.
        • et al.
        • VISSIT Trial Investigators
        Effect of a balloon-expandable intracranial stent vs medical therapy on risk of stroke in patients with symptomatic intracranial stenosis: the VISSIT randomized clinical trial.
        JAMA. 2015; 313: 1240-1248
        • Chimowitz M.I.
        • Lynn M.J.
        • Howlett-Smith H.
        • et al.
        • Warfarin-Aspirin Symptomatic Intracranial Disease Trial Investigators
        Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis.
        N Engl J Med. 2005; 352: 1305-1316
        • Halkes P.H.
        • van Gijn J.
        • Kappelle L.J.
        • et al.
        • ESPRIT Study Group
        Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial.
        Lancet. 2006; 367: 1665-1673
        • Halkes P.H.
        • van Gijn J.
        • Kappelle L.J.
        • et al.
        • ESPRIT Study Group
        Medium intensity oral anticoagulants versus aspirin after cerebral ischaemia of arterial origin (ESPRIT): a randomised controlled trial.
        Lancet Neurol. 2007; 6: 115-124
        • Wong K.S.
        • Chen C.
        • Ng P.W.
        • et al.
        • FISS-tris Study Investigators
        Low-molecular-weight heparin compared with aspirin for the treatment of acute ischaemic stroke in Asian patients with large artery occlusive disease: a randomised study.
        Lancet Neurol. 2007; 6: 407-413
        • Sacco R.L.
        • Diener H.C.
        • Yusuf S.
        • et al.
        • PRoFESS Study Group
        Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke.
        N Engl J Med. 2008; 359: 1238-1251
        • Kwon S.U.
        • Hong K.S.
        • Kang D.W.
        • et al.
        Efficacy and safety of combination antiplatelet therapies in patients with symptomatic intracranial atherosclerotic stenosis.
        Stroke. 2011; 42: 2883-2890
        • Nguyen-Huynh M.N.
        • Wintermark M.
        • English J.
        • et al.
        How accurate is CT angiography in evaluating intracranial atherosclerotic disease?.
        Stroke. 2008; 39: 1184-1188
        • Bash S.
        • Villablanca J.P.
        • Jahan R.
        • et al.
        Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography.
        AJNR Am J Neuroradiol. 2005; 26: 1012-1021
        • van der Kolk A.G.
        • Zwanenburg J.J.
        • Brundel M.
        • et al.
        Intracranial vessel wall imaging at 7.0-T MRI.
        Stroke. 2011; 42: 2478-2484
        • Qiao Y.
        • Anwar Z.
        • Intrapiromkul J.
        • et al.
        Patterns and implications of intracranial arterial remodeling in stroke patients.
        Stroke. 2016; 47: 434-440
        • Glagov S.
        • Weisenberg E.
        • Zarins C.K.
        • et al.
        Compensatory enlargement of human atherosclerotic coronary arteries.
        N Engl J Med. 1987; 316: 1371-1375
        • Degnan A.J.
        • Gallagher G.
        • Teng Z.
        • et al.
        MR angiography and imaging for the evaluation of middle cerebral artery atherosclerotic disease.
        AJNR Am J Neuroradiology. 2012; 33: 1427-1435
        • Li M.L.
        • Xu W.H.
        • Song L.
        • et al.
        Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3T.
        Atherosclerosis. 2009; 204: 447-452
        • Xu W.H.
        • Li M.L.
        • Niu J.W.
        • et al.
        Intracranial artery atherosclerosis and lumen dilation in cerebral small-vessel diseases: a high-resolution MRI Study.
        CNS Neurosci Ther. 2014; 20: 364-367
        • Zhou L.
        • Li M.L.
        • Niu J.W.
        • et al.
        High-resolution MRI findings in patients with capsular warning syndrome.
        BMC Neurol. 2014; 14: 16
        • Mazighi M.
        • Labreuche J.
        • Gongora-Rivera F.
        • et al.
        Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke.
        Stroke. 2008; 39: 1142-1147
        • Chung G.H.
        • Kwak H.S.
        • Hwang S.B.
        • et al.
        High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis.
        Eur J Radiol. 2012; 81: 4069-4074
        • Kim Y.J.
        • Lee D.H.
        • Kwon J.Y.
        • et al.
        High resolution MRI difference between moyamoya disease and intracranial atherosclerosis.
        Eur J Neurol. 2013; 20: 1311-1318
        • Natori T.
        • Sasaki M.
        • Miyoshi M.
        • et al.
        Evaluating middle cerebral artery atherosclerotic lesions in acute ischemic stroke using magnetic resonance T1-weighted 3-dimensional vessel wall imaging.
        J Stroke Cerebrovasc Dis. 2014; 23: 706-711
        • Pfefferkorn T.
        • Linn J.
        • Habs M.
        • et al.
        Black blood MRI in suspected large artery primary angiitis of the central nervous system.
        J Neuroimaging. 2013; 23: 379-383
        • Swartz R.H.
        • Bhuta S.S.
        • Farb R.I.
        • et al.
        Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI.
        Neurology. 2009; 72: 627-634
        • Park J.K.
        • Lee C.S.
        • Sim K.B.
        • et al.
        Imaging of the walls of saccular cerebral aneurysms with double inversion recovery black-blood sequence.
        J Magn Reson Imaging. 2009; 30: 1179-1183
        • Portanova A.
        • Hakakian N.
        • Mikulis D.J.
        • et al.
        Intracranial vasa vasorum: insights and implications for imaging.
        Radiology. 2013; 267: 667-679
        • Qiao Y.
        • Steinman D.A.
        • Qin Q.
        • et al.
        Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.
        J Magn Reson Imaging. 2011; 34: 22-30
        • Leng X.
        • Wong K.S.
        • Liebeskind D.S.
        Evaluating intracranial atherosclerosis rather than intracranial stenosis.
        Stroke. 2014; 45: 645-651
        • Mathur K S.
        • Kashyap S K.
        • Kumar V.
        Correlation of the extent and severity of atherosclerosis in the coronary and cerebral arteries.
        Circulation. 1963; 27: 929-934
        • Resch J.A.
        • Okabe N.
        • Loewenson R.
        • et al.
        A comparative study of cerebral atherosclerosis in a Japanese and Minnesota population.
        J Atheroscler Res. 1967; 7: 687-693
        • Baker A.B.
        • Iannone A.
        Cerebrovascular disease. I. The large arteries of the circle of Willis.
        Neurology. 1959; 9: 321
        • Bae H.J.
        • Yoon B.W.
        • Kang D.W.
        • et al.
        Correlation of coronary and cerebral atherosclerosis: difference between extracranial and intracranial arteries.
        Cerebrovasc Dis. 2006; 21: 112-119
        • Ritz K.
        • Denswil N.P.
        • Stam O.C.
        • et al.
        Cause and mechanisms of intracranial atherosclerosis.
        Circulation. 2014; 130: 1407-1414
        • Maiellaro K.
        • Taylor W.R.
        The role of the adventitia in vascular inflammation.
        Cardiovasc Res. 2007; 75: 640-648
        • Ritman E.L.
        • Lerman A.
        The dynamic vasa vasorum.
        Cardiovasc Res. 2007; 75: 649-658
        • Kwon T.-G.
        • Lerman L.O.
        • Lerman A.
        The vasa vasorum in atherosclerosis: the vessel within the vascular wall.
        J Am Coll Cardiol. 2015; 65: 2478-2480
        • Dunmore B.J.
        • McCarthy M.J.
        • Naylor A.R.
        • et al.
        Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques.
        J Vasc Surg. 2007; 45: 155-159
        • Yang W.J.
        • Wong K.S.
        • Chen X.Y.
        Intracranial atherosclerosis: from microscopy to high-resolution magnetic resonance imaging.
        J Stroke. 2017; 19: 249-260
        • Aydin F.
        Do human intracranial arteries lack vasa vasorum? A comparative immunohistochemical study of intracranial and systemic arteries.
        Acta Neuropathol. 1998; 96: 22-28
        • Buckley M.L.
        • Ramji D.P.
        The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis.
        Biochim Biophys Acta. 2015; 1852: 1498-1510
        • Doherty T.M.
        • Asotra K.
        • Fitzpatrick L.A.
        • et al.
        Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads.
        Proc Natl Acad Sci U S A. 2003; 100: 11201-11206
        • Libby P.
        Molecular bases of the acute coronary syndromes.
        Circulation. 1995; 91: 2844-2850
        • Oppenheim C.
        • Naggara O.
        • Touzé E.
        • et al.
        High-resolution MR imaging of the cervical arterial wall: what the radiologist needs to know.
        Radiographics. 2009; 29: 1413-1431
        • Chen X.Y.
        • Wong K.S.
        • Lam W.W.
        • et al.
        Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with infarct in a postmortem study.
        Cerebrovasc Dis. 2008; 25: 74-80
        • Yuan C.
        • Mitsumori L.M.
        • Ferguson M.S.
        • et al.
        In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques.
        Circulation. 2001; 104: 2051-2056
        • Hatsukami T.S.
        • Ross R.
        • Polissar N.L.
        • et al.
        Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging.
        Circulation. 2000; 102: 959-964
        • Yuan C.
        • Kerwin W.S.
        • Ferguson M.S.
        • et al.
        Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization.
        J Magn Reson Imaging. 2002; 15: 62-67
        • Adams H.P.
        • Bendixen B.H.
        • Kappelle L.J.
        • et al.
        Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment.
        Stroke. 1993; 24: 35-41
        • Hart R.G.
        • Diener H.C.
        • Coutts S.B.
        • et al.
        Embolic strokes of undetermined source: the case for a new clinical construct.
        Lancet Neurol. 2014; 13: 429-438
        • Bodle J.D.
        • Feldmann E.
        • Swartz R.H.
        • et al.
        High-resolution magnetic resonance imaging: an emerging tool for evaluating intracranial arterial disease.
        Stroke. 2013; 44: 287-292
        • Crisby M.
        • Nordin-Fredriksson G.
        • Shah P.K.
        • et al.
        Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization.
        Circulation. 2001; 103: 926-933
        • Lindenholz A.
        • van der Kolk A.G.
        • Zwanenburg J.J.M.
        • et al.
        The use and pitfalls of intracranial vessel wall imaging: how we do it.
        Radiology. 2018; 286: 12-28
        • Zhang L.
        • Zhang N.
        • Wu J.
        • et al.
        High resolution three dimensional intracranial arterial wall imaging at 3 T using T1 weighted SPACE.
        Magn Reson Imaging. 2015; 33: 1026-1034
        • Li M.L.
        • Xu Y.Y.
        • Hou B.
        • et al.
        High-resolution intracranial vessel wall imaging using 3D CUBE T1 weighted sequence.
        Eur J Radiol. 2016; 85: 803-807
        • Edelman R.R.
        • Chien D.
        • Kim D.
        Fast selective black blood MR imaging.
        Radiology. 1991; 181: 655-660
        • Li L.
        • Miller K.L.
        • Jezzard P.
        DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging.
        Magn Reson Med. 2012; 68: 1423-1438
        • Fan Z.
        • Sheehan J.
        • Bi X.
        • et al.
        3D noncontrast MR angiography of the distal lower extremities using flow-sensitive dephasing (FSD)-prepared balanced SSFP.
        Magn Reson Med. 2009; 62: 1523-1532
        • Xie Y.
        • Yang Q.
        • Xie G.
        • et al.
        Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation.
        Magn Reson Med. 2016; 75: 2286-2294
        • Wang J.
        • Helle M.
        • Zhou Z.
        • et al.
        Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI.
        Magn Reson Med. 2016; 75: 831-838
        • Fan Z.
        • Yang Q.
        • Deng Z.
        • et al.
        Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo.
        Magn Reson Med. 2017; 77: 1142-1150
        • Yang H.
        • Zhang X.
        • Qin Q.
        • et al.
        Improved cerebrospinal fluid suppression for intracranial vessel wall MRI.
        J Magn Reson Imaging. 2016; 44: 665-672
        • Bouvy W.H.
        • Biessels G.J.
        • Kuijf H.J.
        • et al.
        Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging.
        Invest Radiol. 2014; 49: 307-313
        • Kleinloog R.
        • Korkmaz E.
        • Zwanenburg J.J.
        • et al.
        Visualization of the aneurysm wall: a 7.0-tesla magnetic resonance imaging study.
        Neurosurgery. 2014; 75 ([discussion: 622]): 614-622
        • Gutierrez J.
        • Rosoklija G.
        • Murray J.
        • et al.
        A quantitative perspective to the study of brain arterial remodeling of donors with and without HIV in the Brain Arterial Remodeling Study (BARS).
        Front Physiol. 2014; 5: 56
        • Jain K.K.
        Some observations on the anatomy of the middle cerebral artery.
        Can J Surg. 1964; 7: 134-139
        • Mandell D.M.
        • Mossa-Basha M.
        • Qiao Y.
        • et al.
        Intracranial vessel Wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology.
        AJNR Am J Neuroradiol. 2017; 38: 218-229
        • Qiao Y.
        • Zeiler S.R.
        • Mirbagheri S.
        • et al.
        Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images.
        Radiology. 2014; 271: 534-542
        • Antiga L.
        • Wasserman B.A.
        • Steinman D.A.
        On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging.
        Magn Reson Med. 2008; 60: 1020-1028
        • Zhu C.
        • Haraldsson H.
        • Tian B.
        • et al.
        High resolution imaging of the intracranial vessel wall at 3 and 7 T using 3D fast spin echo MRI.
        MAGMA. 2016; 29: 559-570
        • Harteveld A.A.
        • van der Kolk A.G.
        • van der Worp H.B.
        • et al.
        High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T.
        Eur Radiol. 2017; 27: 1585-1595
        • Mossa-Basha M.
        • Hwang W.D.
        • De Havenon A.
        • et al.
        Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes.
        Stroke. 2015; 46: 1567-1573
        • Andre J.B.
        • Bresnahan B.W.
        • Mossa-Basha M.
        • et al.
        Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations.
        J Am Coll Radiol. 2015; 12: 689-695
      1. Bi X, et al. Motion-robust 3D Black-blood Carotid wall imaging using flow-sensitive dephasing preparation and stack-of-stars trajectory. In Proceedings of the ISMRM. 2015. Toronto, May 30 - June 5, 2015.

        • Harteveld A.A.
        • Denswil N.P.
        • Siero J.C.
        • et al.
        Quantitative intracranial atherosclerotic plaque characterization at 7T MRI: an ex vivo study with histologic validation.
        AJNR Am J Neuroradiol. 2016; 37: 802-810
        • Dieleman N.
        • van der Kolk A.G.
        • Zwanenburg J.J.
        • et al.
        Imaging intracranial vessel wall pathology with magnetic resonance imaging: current prospects and future directions.
        Circulation. 2014; 130: 192-201
        • Alexander M.D.
        • Yuan C.
        • Rutman A.
        • et al.
        High-resolution intracranial vessel wall imaging: imaging beyond the lumen.
        J Neurol Neurosurg Psychiatry. 2016; 87: 589-597
        • Turan T.N.
        • Bonilha L.
        • Morgan P.S.
        • et al.
        Intraplaque hemorrhage in symptomatic intracranial atherosclerotic disease.
        J Neuroimaging. 2011; 21: e159-e161
        • Mineyko A.
        • Kirton A.
        • Ng D.
        • et al.
        Normal intracranial periarterial enhancement on pediatric brain MR imaging.
        Neuroradiology. 2013; 55: 1161-1169
        • den Hartog A.G.
        • Bovens S.M.
        • Koning W.
        • et al.
        Current status of clinical magnetic resonance imaging for plaque characterisation in patients with carotid artery stenosis.
        Eur J Vasc Endovasc Surg. 2013; 45: 7-21
        • Majidi S.
        • Sein J.
        • Watanabe M.
        • et al.
        Intracranial-derived atherosclerosis assessment: an in vitro comparison between virtual histology by intravascular ultrasonography, 7T MRI, and histopathologic findings.
        AJNR Am J Neuroradiol. 2013; 34: 2259-2264
        • Chen X.-Y.
        • Lam W.W.
        • Ng H.K.
        • et al.
        Diagnostic accuracy of MRI for middle cerebral artery stenosis: a postmortem study.
        J Neuroimaging. 2006; 16: 318-322
        • Chen X.Y.
        • Wong K.S.
        • Lam W.W.
        • et al.
        High signal on T1 sequence of magnetic resonance imaging confirmed to be intraplaque haemorrhage by histology in middle cerebral artery.
        Int J Stroke. 2014; 9: E19
        • Turan T.N.
        • Rumboldt Z.
        • Granholm A.C.
        • et al.
        Intracranial atherosclerosis: correlation between in-vivo 3T high resolution MRI and pathology.
        Atherosclerosis. 2014; 237: 460-463
        • van der Kolk A.G.
        • Zwanenburg J.J.
        • Denswil N.P.
        • et al.
        Imaging the intracranial atherosclerotic vessel wall using 7T MRI: initial comparison with histopathology.
        AJNR Am J Neuroradiol. 2015; 36: 694-701
        • Klein I.F.
        • Lavallée P.C.
        • Touboul P.J.
        • et al.
        In vivo middle cerebral artery plaque imaging by high-resolution MRI.
        Neurology. 2006; 67: 327-329
        • Xu W.H.
        • Li M.L.
        • Gao S.
        • et al.
        Middle cerebral artery intraplaque hemorrhage: prevalence and clinical relevance.
        Ann Neurol. 2012; 71: 195-198
        • Jiang Y.
        • Zhu C.
        • Peng W.
        • et al.
        Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI.
        Atherosclerosis. 2016; 249: 10-16
        • Wu X.H.
        • Chen X.Y.
        • Fan Y.H.
        • et al.
        High extent of intracranial carotid artery calcification is associated with downstream microemboli in stroke patients.
        J Stroke Cerebrovasc Dis. 2017; 26: 442-447
        • Vakil P.
        • Vranic J.
        • Hurley M.C.
        • et al.
        T1 gadolinium enhancement of intracranial atherosclerotic plaques associated with symptomatic ischemic presentations.
        AJNR Am J Neuroradiol. 2013; 34: 2252-2258
        • Chaudhary V.
        • Bano S.
        Imaging of the pituitary: recent advances.
        Indian J Endocrinol Metab. 2011; 15: S216-S223
        • Skarpathiotakis M.
        • Mandell D.M.
        • Swartz R.H.
        • et al.
        Intracranial atherosclerotic plaque enhancement in patients with ischemic stroke.
        AJNR Am J Neuroradiol. 2013; 34: 299-304
        • Kim J.M.
        • Jung K.H.
        • Sohn C.H.
        • et al.
        Middle cerebral artery plaque and prediction of the infarction pattern.
        Arch Neurol. 2012; 69: 1470-1475
        • Wu F.
        • Song H.
        • Ma Q.
        • et al.
        Hyperintense plaque on intracranial vessel wall magnetic resonance imaging as a predictor of artery-to-artery embolic infarction.
        Stroke. 2018; 49: 905-911
        • Trivedi R.A.
        • U-King-Im J.M.
        • Graves M.J.
        • et al.
        In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI.
        Stroke. 2004; 35: 1631-1635
        • Hasan D.
        • Chalouhi N.
        • Jabbour P.
        • et al.
        Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm: a pilot study.
        Stroke. 2012; 43: 3258-3265
        • Liu Q.
        • Huang J.
        • Degnan A.J.
        • et al.
        Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease.
        Int J Cardiovasc Imaging. 2013; 29: 1491-1498
        • Bai X.
        • Lv P.
        • Liu K.
        • et al.
        3D black-blood luminal angiography derived from high-resolution MR vessel wall imaging in detecting MCA stenosis: a preliminary study.
        AJNR Am J Neuroradiol. 2018; 39: 1827-1832
        • Lee N.J.
        • Chung M.S.
        • Jung S.C.
        • et al.
        Comparison of high-resolution MR imaging and digital subtraction angiography for the characterization and diagnosis of intracranial artery disease.
        AJNR Am J Neuroradiol. 2016; 37: 2245-2250
        • Baik S.H.
        • Kwak H.S.
        • Hwang S.B.
        • et al.
        Three-dimensional black blood contrast enhanced magnetic resonance imaging in patients with acute ischemic stroke and negative susceptibility vessel sign.
        Eur J Radiol. 2018; 102: 188-194
        • Wang Y.
        • Lou X.
        • Li Y.
        • et al.
        Imaging investigation of intracranial arterial dissecting aneurysms by using 3 T high-resolution MRI and DSA: from the interventional neuroradiologists' view.
        Acta Neurochir (Wien). 2014; 156: 515-525
        • Tsukahara T.
        • Minematsu K.
        Overview of spontaneous cervicocephalic arterial dissection in Japan.
        in: Laakso A. Hernesniemi J. Yonekawa Y. Tsukahara T. Surgical management of cerebrovascular disease. Springer Vienna, Vienna (Austria)2010: 35-40
        • Han M.
        • Rim N.J.
        • Lee J.S.
        • et al.
        Feasibility of high-resolution MR imaging for the diagnosis of intracranial vertebrobasilar artery dissection.
        Eur Radiol. 2014; 24: 3017-3024
        • Gao P.H.
        • Yang L.
        • Wang G.
        • et al.
        Symptomatic unruptured isolated middle cerebral artery dissection: clinical and magnetic resonance imaging features.
        Clin Neuroradiol. 2016; 26: 81-91
        • Kwak H.S.
        • Hwang S.B.
        • Chung G.H.
        • et al.
        High-resolution magnetic resonance imaging of symptomatic middle cerebral artery dissection.
        J Stroke Cerebrovasc Dis. 2014; 23: 550-553
        • Mizutani T.
        Natural course of intracranial arterial dissections.
        J Neurosurg. 2011; 114: 1037-1044
        • Arauz A.
        • Márquez J.M.
        • Artigas C.
        • et al.
        Recanalization of vertebral artery dissection.
        Stroke. 2010; 41: 717-721
        • Xu W.H.
        • Li M.L.
        • Gao S.
        • et al.
        In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis.
        Atherosclerosis. 2010; 212: 507-511
        • Tan T.Y.
        • Kuo Y.L.
        • Lin W.C.
        • et al.
        Effect of lipid-lowering therapy on the progression of intracranial arterial stenosis.
        J Neurol. 2009; 256: 187-193
        • Obusez E.C.
        • Hui F.
        • Hajj-Ali R.A.
        • et al.
        High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis.
        AJNR Am J Neuroradiol. 2014; 35: 1527-1532
        • Saam T.
        • Habs M.
        • Pollatos O.
        • et al.
        High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis.
        Br J Radiol. 2010; 83: e182-e184
        • Mandell Daniel M.
        • Matouk C.C.
        • Farb R.I.
        • et al.
        Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis.
        Stroke. 2012; 43: 860-862
        • Scott R.M.
        • Smith E.R.
        Moyamoya disease and moyamoya syndrome.
        N Engl J Med. 2009; 360: 1226-1237
        • Yuan M.
        • Liu Z.Q.
        • Wang Z.Q.
        • et al.
        High-resolution MR imaging of the arterial wall in moyamoya disease.
        Neurosci Lett. 2015; 584: 77-82
        • Ryoo S.
        • Cha J.
        • Kim S.J.
        • et al.
        High-resolution magnetic resonance wall imaging findings of Moyamoya disease.
        Stroke. 2014; 45: 2457-2460
        • Matouk C.C.
        • Mandell D.M.
        • Günel M.
        • et al.
        Vessel wall magnetic resonance imaging identifies the site of rupture in patients with multiple intracranial aneurysms: proof of principle.
        Neurosurgery. 2013; 72 ([discussion: 496]): 492-496
        • Horie N.
        • Morikawa M.
        • Fukuda S.
        • et al.
        Detection of blood blister-like aneurysm and intramural hematoma with high-resolution magnetic resonance imaging.
        J Neurosurg. 2011; 115: 1206-1209
        • Edjlali M.
        • Gentric J.C.
        • Régent-Rodriguez C.
        • et al.
        Does aneurysmal wall enhancement on vessel wall MRI help to distinguish stable from unstable intracranial aneurysms?.
        Stroke. 2014; 45: 3704-3706
        • Nagahata S.
        • Nagahata M.
        • Obara M.
        • et al.
        Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional turbo spin-echo sequence with motion-sensitized driven-equilibrium: a sign of ruptured aneurysm?.
        Clin Neuroradiol. 2016; 26: 277-283
        • Li B.
        • Li H.
        • Li J.
        • et al.
        Relaxation enhanced compressed sensing three-dimensional black-blood vessel wall MR imaging: Preliminary studies.
        Magn Reson Imaging. 2015; 33: 932-938
        • Busse R.F.
        • Brau A.C.
        • Vu A.
        • et al.
        Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo.
        Magn Reson Med. 2008; 60: 640-649