Advertisement
Review Article| Volume 1, P95-107, September 2019

Lung Cancer Screening

      Multiple clinical trials, including the National Lung Screening Trial (NLST) and the Dutch-Belgian Randomized Lung Cancer Screening (NELSON) trial, have shown the efficacy of lung cancer screening with low-dose computed tomography (LDCT).

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Cancer Society
        Cancer facts & figures 2018. American Cancer Society website.
        (Available at:) (Accessed November 30, 2018)
        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2018.
        CA Cancer J Clin. 2018; 68: 7-30
        • Aberle D.R.
        • Adams A.M.
        • Black W.C.
        • et al.
        • The National Lung Screening Trial Research Team
        Reduced lung-cancer mortality with low-dose computed tomographic screening.
        N Engl J Med. 2011; 365: 395-409
      1. De Koning H, Van Der Aalst C, Ten Haaf K, et al. Effects of volume CT lung cancer screening: Mortality results of the NELSON randomized-controlled population based trial. 2018 World Conference on Lung Cancer. Abstract PL02.05. Toronto, Canada, September 25, 2018.

        • US Preventive Services Task Force
        Final update summary: lung cancer: screening.
        (Available at:) (Accessed November 30, 2018)
        • Centers for Medicare & Medicaid Services website
        Decision memo for screening for lung cancer with low dose computed tomography (LDCT) (CAG-00439N).
        (Available at:) (Accessed November 30, 2018)
        • Pinsky P.F.
        • Gierada D.S.
        • Black W.
        • et al.
        Performance of Lung-RADS in the National Lung Screening Trial: a retrospective assessment.
        Ann Intern Med. 2015; 162: 485-491
        • McKee B.J.
        • Regis S.M.
        • McKee A.B.
        • et al.
        Performance of ACR Lung-RADS in a clinical CT lung screening program.
        J Am Coll Radiol. 2016; 13: R25-R29
        • Carter B.W.
        • Lichtenberger 3rd, J.P.
        • Wu C.C.
        • et al.
        Screening for lung cancer: lexicon for communicating with health care providers.
        AJR Am J Roentgenol. 2018; 210: 473-479
        • American College of Radiology website
        Lung CT screening reporting and data system (Lung-RADS).
        (Available at:) (Accessed November 30, 2018)
        • Martin M.D.
        • Kanne J.P.
        • Broderick L.S.
        • et al.
        Lung-RADS: pushing the limits.
        Radiographics. 2017; 37: 1975-1993
        • Moyer V.A.
        • U.S. Preventive Services Task Force
        Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement.
        Ann Intern Med. 2014; 160: 330-338
        • de Hoop B.
        • Gietema H.
        • van de Vorst S.
        • et al.
        Pulmonary ground-glass nodules: increase in mass as an early indicator of growth.
        Radiology. 2010; 255: 199-206
        • van Riel S.J.
        • Sánchez C.I.
        • Bankier A.A.
        • et al.
        Observer variability for classification of pulmonary nodules on low-dose CT images and its effect on nodule management.
        Radiology. 2015; 277: 863-871
        • MacMahon H.
        • Naidich D.P.
        • Goo J.M.
        • et al.
        Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017.
        Radiology. 2017; 284: 228-243
        • Chung K.
        • Jacobs C.
        • Scholten E.T.
        • et al.
        Lung-RADS category 4X: does it improve prediction of malignancy in subsolid nodules?.
        Radiology. 2017; 284: 264-271
        • Kaminetzky M.
        • Milch H.S.
        • Shmukler A.
        • et al.
        Effectiveness of Lung-RADS in reducing false-positive results in a diverse, underserved, urban lung cancer screening cohort.
        J Am Coll Radiol. 2018; 16: 419-426
        • Hsu H.T.
        • Tang E.K.
        • Wu M.T.
        • et al.
        Modified lung-RADS improves performance of screening LDCT in a population with high prevalence of non-smoking-related lung cancer.
        Acad Radiol. 2018; 25: 1240-1251
        • Henschke C.I.
        • McCauley D.I.
        • Yankelevitz D.F.
        • et al.
        Early Lung Cancer Action Project: overall design and findings from baseline screening.
        Lancet. 1999; 354: 99-105
        • Ru Zhao Y.
        • Xie X.
        • de Koning H.J.
        • et al.
        NELSON lung cancer screening study.
        Cancer Imaging. 2011; 11: S79-S84
        • Saghir Z.
        • Dirksen A.
        • Ashraf H.
        • et al.
        CT screening for lung cancer brings forward early disease. The randomized Danish Lung Cancer Screening Trial: status after five annual screening rounds with low-dose CT.
        Thorax. 2012; 67: 296-301
      2. Li C, Guichet P, Cen S, et al. Lung cancer screening in a socioeconomically disadvantaged population: Baseline and 1st Annual Rescreening Results. Radiological Society of North America 2018 Scientific Assembly and Annual Meeting. Chicago IL, November 25 – November 30, 2018. Available at: archive.rsna.org/2018/18016689.html. Accessed December 2, 2018.

      3. Kessler A, Peng R, Mardakhaev E, et al. Performance of the Vancouver Risk Calculator Compared to ACR Lung-RADS in an Urban, diverse clinical lung cancer screening cohort. Radiological Society of North America 2018 Scientific Assembly and annual Meeting. Chicago IL, November 25 – November 30, 2018. Available at: archive.rsna.org/2018/18008738.html. Accessed December 2, 2018.

        • Morgan L.
        • Choi H.
        • Reid M.
        • et al.
        Frequency of incidental findings and subsequent evaluation in low-dose computed tomographic scans for lung cancer screening.
        Ann Am Thorac Soc. 2017; 14: 1450-1456
        • van de Wiel J.C.
        • Wang Y.
        • Xu D.M.
        • et al.
        Neglectable benefit of searching for incidental findings in the Dutch-Belgian lung cancer screening trial (NELSON) using low-dose multidetector CT.
        Eur Radiol. 2007; 17: 1474-1482
        • Kucharczyk M.J.
        • Menezes R.J.
        • McGregor A.
        • et al.
        Assessing the impact of incidental findings in a lung cancer screening study by using low-dose computed tomography.
        Can Assoc Radiol J. 2011; 62: 141-145
        • Nguyen X.V.
        • Davies L.
        • Eastwood J.D.
        • et al.
        Extrapulmonary findings and malignancies in participants screened with chest CT in the National Lung Screening Trial.
        J Am Coll Radiol. 2017; 14: 324-330
        • Godoy M.C.B.
        • Pereira H.A.C.
        • Carter B.W.
        • et al.
        Incidental findings in lung cancer screening: which ones are relevant?.
        Semin Roentgenol. 2017; 52: 156-160
        • Tsai E.B.
        • Chiles C.
        • Carter B.W.
        • et al.
        Incidental findings on lung cancer screening: significance and management.
        Semin Ultrasound CT MR. 2018; 39: 273-281
        • Priola A.M.
        • Priola S.M.
        • Giaj-Levra M.
        • et al.
        Clinical implications and added costs of incidental findings in an early detection study of lung cancer by using low-dose spiral computed tomography.
        Clin Lung Cancer. 2013; 14: 139-148
        • Swensen S.J.
        • Jett J.R.
        • Hartman T.E.
        • et al.
        Lung cancer screening with CT: Mayo Clinic experience.
        Radiology. 2003; 226: 756-761
        • Rampinelli C.
        • Preda L.
        • Maniglio M.
        • et al.
        Extrapulmonary malignancies detected at lung cancer screening.
        Radiology. 2011; 261: 293-299
        • Munden R.F.
        • Carter B.W.
        • Chiles C.
        • et al.
        Managing incidental findings on thoracic CT: mediastinal and cardiovascular findings. A white paper of the ACR Incidental Findings Committee.
        J Am Coll Radiol. 2018; 15: 1087-1096
        • Wiener R.S.
        • Gould M.K.
        • Arenberg D.A.
        • et al.
        An official American Thoracic Society/American College of Chest Physicians policy statement: implementation of low-dose computed tomography lung cancer screening programs in clinical practice.
        Am J Respir Crit Care Med. 2015; 192: 881-891
        • Hoang J.K.
        • Langer J.E.
        • Middleton W.D.
        • et al.
        Managing incidental thyroid nodules detected on imaging: white paper of the ACR Incidental Thyroid Findings Committee.
        J Am Coll Radiol. 2015; 12: 143-150
        • Khosa F.
        • Krinsky G.
        • Macari M.
        • et al.
        Managing incidental findings on abdominal and pelvic CT and MRI, Part 2: white paper of the ACR Incidental Findings Committee II on vascular findings.
        J Am Coll Radiol. 2013; 10: 789-794
        • Sebastian S.
        • Araujo C.
        • Neitlich J.D.
        • et al.
        Managing incidental findings on abdominal and pelvic CT and MRI, Part 4: white paper of the ACR Incidental Findings Committee II on gallbladder and biliary findings.
        J Am Coll Radiol. 2013; 10: 953-956
        • Huang Y.
        • Liu Z.
        • He L.
        • et al.
        Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer.
        Radiology. 2016; 281: 947-957. 2
        • Mayr N.A.
        • Huang Z.
        • Wang J.Z.
        • et al.
        Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model.
        Int J Radiat Oncol Biol Phys. 2012; 83: 972-979
        • Ganeshan B.
        • Panayiotou E.
        • Burnand K.
        • et al.
        Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival.
        Eur Radiol. 2012; 22: 796-802
        • Win T.
        • Miles K.A.
        • Janes S.M.
        • et al.
        Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer.
        Clin Cancer Res. 2013; 19: 3591-3599
        • Lambin P.
        • Rios-Velazquez E.
        • Leijenaar R.
        • et al.
        Radiomics: extracting more information from medical images using advanced feature analysis.
        Eur J Cancer. 2012; 48: 441-446
        • Aerts H.J.
        • Velazquez E.R.
        • Leijenaar R.T.
        • et al.
        Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.
        Nat Commun. 2014; 5: 4006
        • Rutman A.M.
        • Kuo M.D.
        Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging.
        Eur J Radiol. 2009; 70: 232-241
        • Hawkins S.
        • Wang H.
        • Liu Y.
        • et al.
        Predicting malignant nodules from screening CTs.
        J Thorac Oncol. 2016; 11: 2120-2128
      4. Ma J, Wang Q, Ren Y, et al. Automatic lung nodule classification with radiomics approach. Paper presented at: SPIE Medical Imaging 2016: PACS and imaging informatics: next generation and Innovations 2016; San Diego, California, United States, 5 April 2016.

        • Buty M.
        • Xu Z.
        • Gao M.
        • et al.
        Characterization of lung nodule malignancy using hybrid shape and appearance features.
        in: Medical image computing and Computer-Assisted intervention – MICCAI 2016: 19th International Conference, Athens, Greece, October 17–21, 2016, Proceedings, Part I. vol. 9900. Springer International Publishing, Cham (Swizerland)2016: 662-670
        • Kumar D.
        • Shafiee M.J.
        • Chung A.G.
        • et al.
        Discovery radiomics for computed tomography cancer detection.
        arXive. 2015; (arXiv:1509.00117)
        • Choi W.
        • Oh J.H.
        • Riyahi S.
        • et al.
        Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer.
        Med Phys. 2018; 45: 1537-1549
        • Carter B.W.
        • Godoy M.C.
        • Erasmus J.J.
        Predicting malignant nodules from screening CTs.
        J Thorac Oncol. 2016; 11: 2045-2047
        • Kumar V.
        • Gu Y.
        • Basu S.
        • et al.
        Radiomics: the process and the challenges.
        Magn Reson Imaging. 2012; 30: 1234-1248
        • Chu G.C.W.
        • Lazare K.
        • Sullivan F.
        Serum and blood based biomarkers for lung cancer screening: a systematic review.
        BMC Cancer. 2018; 18: 181
        • Kanodra N.M.
        • Silvestri G.A.
        • Tanner N.T.
        Screening and early detection efforts in lung cancer.
        Cancer. 2015; 121: 1347-1356
        • Sozzi G.
        • Boeri M.
        Potential biomarkers for lung cancer screening.
        Transl Lung Cancer Res. 2014; 3: 139-148
        • Hasan N.
        • Kumar R.
        • Kavuru M.S.
        Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers.
        Lung. 2014; 192: 639-648
        • Li C.M.
        • Chu W.Y.
        • Wong D.L.
        • et al.
        Current and future molecular diagnostics in non-small-cell lung cancer.
        Expert Rev Mol Diagn. 2015; 15: 1061-1074
        • Balgkouranidou I.
        • Liloglou T.
        • Lianidou E.S.
        Lung cancer epigenetics: emerging biomarkers.
        Biomark Med. 2013; 7: 49-58
        • Brothers J.F.
        • Hijazi K.
        • Mascaux C.
        • et al.
        Bridging the clinical gaps: genetic, epigenetic and transcriptomic biomarkers for the early detection of lung cancer in the post-National Lung Screening Trial era.
        BMC Med. 2013; 11: 168
        • Hassanein M.
        • Callison J.C.
        • Callaway-Lane C.
        • et al.
        The state of molecular biomarkers for the early detection of lung cancer.
        Cancer Prev Res (Phila). 2012; 5: 992-1006
        • Chapman C.J.
        • Healey G.F.
        • Murray A.
        • et al.
        EarlyCDT(R)-lung test: improved clinical utility through additional autoantibody assays.
        Tumour Biol. 2012; 33: 1319-1326
        • Montani F.
        • Marzi M.J.
        • Dezi F.
        • et al.
        miR-Test: a blood test for lung cancer early detection.
        J Natl Cancer Inst. 2015; 107: djv063
        • Sozzi G.
        • Boeri M.
        • Rossi M.
        • et al.
        Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study.[Erratum appears in J Clin Oncol. 2014 May 10;32(14):1520].
        J Clin Oncol. 2014; 32: 768-773