Advertisement
Review Article| Volume 1, P43-54, September 2019

Four-Dimensional Flow Magnetic Resonance Imaging in Cardiothoracic Imaging

      Four-dimensional (4D) flow magnetic resonance imaging (MRI) provides noninvasive, volumetric hemodynamic assessment of cardiovascular disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dyverfeldt P.
        • Bissell M.
        • Barker A.J.
        • et al.
        4D flow cardiovascular magnetic resonance consensus statement.
        J Cardiovasc Magn Reson. 2015; 17: 72
        • Nayak K.S.
        • Nielsen J.F.
        • Bernstein M.A.
        • et al.
        Cardiovascular magnetic resonance phase contrast imaging.
        J Cardiovasc Magn Reson. 2015; 17: 71
        • Brix L.
        • Ringgaard S.
        • Rasmusson A.
        • et al.
        Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions.
        J Cardiovasc Magn Reson. 2009; 11: 3
        • Carlsson M.
        • Toger J.
        • Kanski M.
        • et al.
        Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T.
        J Cardiovasc Magn Reson. 2011; 13: 55
        • Eriksson J.
        • Carlhall C.J.
        • Dyverfeldt P.
        • et al.
        Semi-automatic quantification of 4D left ventricular blood flow.
        J Cardiovasc Magn Reson. 2010; 12: 9
        • Frydrychowicz A.
        • Wieben O.
        • Niespodzany E.
        • et al.
        Quantification of thoracic blood flow using volumetric magnetic resonance imaging with radial velocity encoding: in vivo validation.
        Invest Radiol. 2013; 48: 819-825
        • Hanneman K.
        • Sivagnanam M.
        • Nguyen E.T.
        • et al.
        Magnetic resonance assessment of pulmonary (QP) to systemic (QS) flows using 4D phase-contrast imaging: pilot study comparison with standard through-plane 2D phase-contrast imaging.
        Acad Radiol. 2014; 21: 1002-1008
        • Hope M.D.
        • Meadows A.K.
        • Hope T.A.
        • et al.
        Clinical evaluation of aortic coarctation with 4D flow MR imaging.
        J Magn Reson Imaging. 2010; 31: 711-718
        • Hsiao A.
        • Alley M.T.
        • Massaband P.
        • et al.
        Improved cardiovascular flow quantification with time-resolved volumetric phase-contrast MRI.
        Pediatr Radiol. 2011; 41: 711-720
        • Nordmeyer S.
        • Riesenkampff E.
        • Crelier G.
        • et al.
        Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study.
        J Magn Reson Imaging. 2010; 32: 677-683
        • Nordmeyer S.
        • Riesenkampff E.
        • Messroghli D.
        • et al.
        Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow.
        J Magn Reson Imaging. 2013; 37: 208-216
        • Stalder A.F.
        • Russe M.F.
        • Frydrychowicz A.
        • et al.
        Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters.
        Magn Reson Med. 2008; 60: 1218-1231
        • Valverde I.
        • Nordmeyer S.
        • Uribe S.
        • et al.
        Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition.
        J Cardiovasc Magn Reson. 2012; 14: 25
        • van der Hulst A.E.
        • Westenberg J.J.
        • Kroft L.J.
        • et al.
        Tetralogy of fallot: 3D velocity-encoded MR imaging for evaluation of right ventricular valve flow and diastolic function in patients after correction.
        Radiology. 2010; 256: 724-734
        • Wentland A.L.
        • Grist T.M.
        • Wieben O.
        Repeatability and internal consistency of abdominal 2D and 4D phase contrast MR flow measurements.
        Acad Radiol. 2013; 20: 699-704
        • Zaman A.
        • Motwani M.
        • Oliver J.J.
        • et al.
        3.0T, time-resolved, 3D flow-sensitive MR in the thoracic aorta: impact of k-t BLAST acceleration using 8- versus 32-channel coil arrays.
        J Magn Reson Imaging. 2015; 42: 495-504
        • Bollache E.
        • van Ooij P.
        • Powell A.
        • et al.
        Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics.
        Int J Cardiovasc Imaging. 2016; 32: 1529-1541
        • Barker A.J.
        • Ooij P.
        • Bandi K.
        • et al.
        Viscous energy loss in the presence of abnormal aortic flow.
        Magn Reson Med. 2014; 72: 620-628
        • Markl M.
        • Wallis W.
        • Brendecke S.
        • et al.
        Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI.
        Magn Reson Med. 2010; 63: 1575-1582
        • Zajac J.
        • Eriksson J.
        • Dyverfeldt P.
        • et al.
        Turbulent kinetic energy in normal and myopathic left ventricles.
        J Magn Reson Imaging. 2015; 41: 1021-1029
        • van Ooij P.
        • Potters W.V.
        • Nederveen A.J.
        • et al.
        A methodology to detect abnormal relative wall shear stress on the full surface of the thoracic aorta using four-dimensional flow MRI.
        Magn Reson Med. 2015; 73: 1216-1227
        • van Ooij P.
        • Powell A.L.
        • Potters W.V.
        • et al.
        Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta.
        J Magn Reson Imaging. 2016; 43: 236-248
        • Garcia J.
        • van der Palen R.L.F.
        • Bollache E.
        • et al.
        Distribution of blood flow velocity in the normal aorta: effect of age and gender.
        J Magn Reson Imaging. 2018; 47: 487-498
        • Allen B.D.
        • Barker A.J.
        • Carr J.C.
        • et al.
        Time-resolved three-dimensional phase contrast MRI evaluation of bicuspid aortic valve and coarctation of the aorta.
        Eur Heart J Cardiovasc Imaging. 2012; 30: 30
        • Allen B.D.
        • Markl M.
        • Barker A.J.
        • et al.
        Influence of beta-blocker therapy on aortic blood flow in patients with bicuspid aortic valve.
        Int J Cardiovasc Imaging. 2016; 32: 621-628
        • Barker A.J.
        • Markl M.
        • Burk J.
        • et al.
        Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta.
        Circ Cardiovasc Imaging. 2012; 5: 457-466
        • Binter C.
        • Gotschy A.
        • Sundermann S.H.
        • et al.
        Turbulent kinetic energy assessed by multipoint 4-dimensional flow magnetic resonance imaging provides additional information relative to echocardiography for the determination of aortic stenosis severity.
        Circ Cardiovasc Imaging. 2017; 10 ([pii:e005486])
        • Bissell M.M.
        • Hess A.T.
        • Biasiolli L.
        • et al.
        Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type.
        Circ Cardiovasc Imaging. 2013; 6: 499-507
        • Burris N.S.
        • Dyverfeldt P.
        • Hope M.D.
        Ascending aortic stiffness with bicuspid aortic valve is variable and not predicted by conventional parameters in young patients.
        J Heart Valve Dis. 2016; 25: 270-280
        • den Reijer P.M.
        • Sallee 3rd, D.
        • van der Velden P.
        • et al.
        Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance.
        J Cardiovasc Magn Reson. 2010; 12: 4
        • Entezari P.
        • Schnell S.
        • Mahadevia R.
        • et al.
        From unicuspid to quadricuspid: influence of aortic valve morphology on aortic three-dimensional hemodynamics.
        J Magn Reson Imaging. 2013; 21: 24498
        • Garcia J.
        • Barker A.J.
        • Collins J.D.
        • et al.
        Volumetric quantification of absolute local normalized helicity in patients with bicuspid aortic valve and aortic dilatation.
        Magn Reson Med. 2017; 78: 689-701
        • Hope M.D.
        • Hope T.A.
        • Meadows A.K.
        • et al.
        Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns.
        Radiology. 2010; 255: 53-61
        • Mahadevia R.
        • Barker A.J.
        • Schnell S.
        • et al.
        Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy.
        Circulation. 2014; 129: 673-682
        • Piatti F.
        • Pirola S.
        • Bissell M.
        • et al.
        Towards the improved quantification of in vivo abnormal wall shear stresses in BAV-affected patients from 4D-flow imaging: benchmarking and application to real data.
        J Biomech. 2017; 50: 93-101
        • van Ooij P.
        • Potters W.V.
        • Collins J.
        • et al.
        Characterization of abnormal wall shear stress using 4D flow MRI in human bicuspid aortopathy.
        Ann Biomed Eng. 2015; 43: 1385-1397
        • Yassine N.M.
        • Shahram J.T.
        • Body S.C.
        Pathogenic mechanisms of bicuspid aortic valve aortopathy.
        Front Physiol. 2017; 8: 687
        • Hope M.D.
        • Sigovan M.
        • Wrenn S.J.
        • et al.
        MRI hemodynamic markers of progressive bicuspid aortic valve-related aortic disease.
        J Magn Reson Imaging. 2014; 40: 140-145
        • Garcia J.
        • Barker A.J.
        • Murphy I.
        • et al.
        Four-dimensional flow magnetic resonance imaging-based characterization of aortic morphometry and haemodynamics: impact of age, aortic diameter, and valve morphology.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 877-884
        • Girdauskas E.
        • Rouman M.
        • Disha K.
        • et al.
        Aortopathy in patients with bicuspid aortic valve stenosis: role of aortic root functional parameters.
        Eur J Cardiothorac Surg. 2016; 49 ([discussion 643–4]): 635-643
        • Guzzardi D.G.
        • Barker A.J.
        • van Ooij P.
        • et al.
        Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping.
        J Am Coll Cardiol. 2015; 66: 892-900
        • Mirzaee H.
        • Henn T.
        • Krause M.J.
        • et al.
        MRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: clinical validation study.
        J Magn Reson Imaging. 2017; 45: 139-146
        • Riesenkampff E.
        • Fernandes J.F.
        • Meier S.
        • et al.
        Pressure fields by flow-sensitive, 4D, velocity-encoded CMR in patients with aortic coarctation.
        JACC Cardiovasc Imaging. 2014; 7: 920-926
        • Goubergrits L.
        • Riesenkampff E.
        • Yevtushenko P.
        • et al.
        MRI-based computational fluid dynamics for diagnosis and treatment prediction: clinical validation study in patients with coarctation of aorta.
        J Magn Reson Imaging. 2015; 41: 909-916
        • Donati F.
        • Figueroa C.A.
        • Smith N.P.
        • et al.
        Non-invasive pressure difference estimation from PC-MRI using the work-energy equation.
        Med Image Anal. 2015; 26: 159-172
        • Reiter U.
        • Reiter G.
        • Fuchsjager M.
        MR phase-contrast imaging in pulmonary hypertension.
        Br J Radiol. 2016; 89: 20150995
        • Reiter G.
        • Reiter U.
        • Kovacs G.
        • et al.
        Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure.
        Circ Cardiovasc Imaging. 2008; 1: 23-30
        • Reiter G.
        • Reiter U.
        • Kovacs G.
        • et al.
        Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension.
        Radiology. 2015; 275: 71-79
        • Schäfer M.
        • Kheyfets V.O.
        • Schroeder J.D.
        • et al.
        Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary hypertension.
        Pulm Circ. 2016; 6: 37-45
        • Crandon S.
        • Elbaz M.S.M.
        • Westenberg J.J.M.
        • et al.
        Clinical applications of intra-cardiac four-dimensional flow cardiovascular magnetic resonance: a systematic review.
        Int J Cardiol. 2017; 249: 486-493
        • Barker A.J.
        • Roldan-Alzate A.
        • Entezari P.
        • et al.
        Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions.
        Magn Reson Med. 2015; 73: 1904-1913
        • Dyverfeldt P.
        • Hope M.D.
        • Tseng E.E.
        • et al.
        Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis.
        JACC Cardiovasc Imaging. 2013; 6: 64-71
        • Allen B.D.
        • Choudhury L.
        • Barker A.J.
        • et al.
        Three-dimensional haemodynamics in patients with obstructive and non-obstructive hypertrophic cardiomyopathy assessed by cardiac magnetic resonance.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 29-36
        • van Ooij P.
        • Allen B.D.
        • Contaldi C.
        • et al.
        4D flow MRI and T1-mapping: assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy.
        J Magn Reson Imaging. 2016; 43: 107-114
        • Cibis M.
        • Lindahl T.L.
        • Ebbers T.
        • et al.
        Left atrial 4D blood flow dynamics and hemostasis following electrical cardioversion of atrial fibrillation.
        Front Physiol. 2017; 8: 1052
        • Fluckiger J.U.
        • Goldberger J.J.
        • Lee D.C.
        • et al.
        Left atrial flow velocity distribution and flow coherence using four-dimensional FLOW MRI: a pilot study investigating the impact of age and pre- and postintervention atrial fibrillation on atrial hemodynamics.
        J Magn Reson Imaging. 2013; 38: 580-587
        • Lee D.C.
        • Markl M.
        • Ng J.
        • et al.
        Three-dimensional left atrial blood flow characteristics in patients with atrial fibrillation assessed by 4D flow CMR.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 1259-1268
        • Markl M.
        • Carr M.
        • Ng J.
        • et al.
        Assessment of left and right atrial 3D hemodynamics in patients with atrial fibrillation: a 4D flow MRI study.
        Int J Cardiovasc Imaging. 2016; 32: 807-815
        • Markl M.
        • Lee D.C.
        • Furiasse N.
        • et al.
        Left atrial and left atrial appendage 4D blood flow dynamics in atrial fibrillation.
        Circ Cardiovasc Imaging. 2016; 9: e004984
        • Prakash A.
        • Powell A.J.
        • Geva T.
        Multimodality noninvasive imaging for assessment of congenital heart disease.
        Circ Cardiovasc Imaging. 2010; 3: 112-125
        • Chelu R.G.
        • Horowitz M.
        • Sucha D.
        • et al.
        Evaluation of atrial septal defects with 4D flow MRI—multilevel and inter-reader reproducibility for quantification of shunt severity.
        MAGMA. 2018; 32: 269-279
        • Sjoberg P.
        • Bidhult S.
        • Bock J.
        • et al.
        Disturbed left and right ventricular kinetic energy in patients with repaired tetralogy of Fallot: pathophysiological insights using 4D-flow MRI.
        Eur Radiol. 2018; 28: 4066-4076
        • Sjöberg P.
        • Heiberg E.
        • Wingren P.
        • et al.
        Decreased diastolic ventricular kinetic energy in young patients with fontan circulation demonstrated by four-dimensional cardiac magnetic resonance imaging.
        Pediatr Cardiol. 2017; 38: 669-680
        • Kamphuis V.P.
        • Elbaz M.S.M.
        • van den Boogaard P.J.
        • et al.
        Disproportionate intraventricular viscous energy loss in Fontan patients: analysis by 4D flow MRI.
        Eur Heart J Cardiovasc Imaging. 2019; 20: 323-333
        • Dillon-Murphy D.
        • Noorani A.
        • Nordsletten D.
        • et al.
        Multi-modality image-based computational analysis of haemodynamics in aortic dissection.
        Biomech Model Mechanobiol. 2016; 15: 857-876
        • Francois C.J.
        • Markl M.
        • Schiebler M.L.
        • et al.
        Four-dimensional, flow-sensitive magnetic resonance imaging of blood flow patterns in thoracic aortic dissections.
        J Thorac Cardiovasc Surg. 2013; 145: 1359-1366
        • Birjiniuk J.
        • Timmins L.H.
        • Young M.
        • et al.
        Pulsatile flow leads to intimal flap motion and flow reversal in an in vitro model of type B aortic dissection.
        Cardiovasc Eng Technol. 2017; 8: 378-389
        • de Beaufort H.W.
        • Shah D.J.
        • Patel A.P.
        • et al.
        Four-dimensional flow cardiovascular magnetic resonance in aortic dissection: assessment in an ex vivo model and preliminary clinical experience.
        J Thorac Cardiovasc Surg. 2019; 157: 467-476.e1
        • Sherrah A.G.
        • Callaghan F.M.
        • Puranik R.
        • et al.
        Multi-velocity encoding four-dimensional flow magnetic resonance imaging in the assessment of chronic aortic dissection.
        Aorta (Stamford). 2017; 5: 80-90
      1. Allen BD, Rahsepar A, Baker AJ, et al. 4D flow MRI improves dissection flap fenestration detection in Type B aorta dissection. 27th Annual Meeting and Exhibition of the Internation Society of Magnetic Resonance in Medicine. Paris, France, June 16–21, 2018.

        • Burris N.S.
        • Patel H.J.
        • Hope M.D.
        Retrograde flow in the false lumen: marker of a false lumen under stress?.
        J Thorac Cardiovasc Surg. 2019; 157: 488-491
        • Rudenick P.A.
        • Segers P.
        • Pineda V.
        • et al.
        False lumen flow patterns and their relation with morphological and biomechanical characteristics of chronic aortic dissections. Computational model compared with magnetic resonance imaging measurements.
        PLoS One. 2017; 12: e0170888
        • Sailer A.M.
        • van Kuijk S.M.
        • Nelemans P.J.
        • et al.
        Computed tomography imaging features in acute uncomplicated Stanford type-B aortic dissection predict late adverse events.
        Circ Cardiovasc Imaging. 2017; 10 ([pii:e005709])
        • Krittanawong C.
        • Kukin M.L.
        Current management and future directions of heart failure with preserved ejection fraction: a contemporary review.
        Curr Treat Options Cardiovasc Med. 2018; 20: 28
        • Nagueh S.F.
        • Smiseth O.A.
        • Appleton C.P.
        • et al.
        Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 1321-1360
        • Adam R.D.
        • Shambrook J.
        • Flett A.S.
        The prognostic role of tissue characterisation using cardiovascular magnetic resonance in heart failure.
        Card Fail Rev. 2017; 3: 86-96
        • Schafer M.
        • Humphries S.
        • Stenmark K.R.
        • et al.
        4D-flow cardiac magnetic resonance-derived vorticity is sensitive marker of left ventricular diastolic dysfunction in patients with mild-to-moderate chronic obstructive pulmonary disease.
        Eur Heart J Cardiovasc Imaging. 2018; 19: 415-424
        • Crandon S.
        • Westenberg J.J.M.
        • Swoboda P.P.
        • et al.
        Impact of age and diastolic function on novel, 4D flow CMR biomarkers of left ventricular blood flow kinetic energy.
        Sci Rep. 2018; 8: 14436
        • Svalbring E.
        • Fredriksson A.
        • Eriksson J.
        • et al.
        Altered diastolic flow patterns and kinetic energy in subtle left ventricular remodeling and dysfunction detected by 4D flow MRI.
        PLoS One. 2016; 11: e0161391