Advertisement
Review Article| Volume 1, P27-41, September 2019

Download started.

Ok

Cardiac MRI T1, T2, and T2* Mapping in Clinical Practice

      Cardiac MRI T1, T2, and T2* parametric mapping techniques allow both visual and quantitative myocardial assessment, detecting focal and global tissue changes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Clinical Radiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lorenz C.H.
        • Walker E.S.
        • Morgan V.L.
        • et al.
        Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging.
        J Cardiovasc Magn Reson. 1999; 1: 7-21
        • Roujol S.
        • Weingärtner S.
        • Foppa M.
        • et al.
        Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE.
        Radiology. 2014; 272: 683-689
        • Radenkovic D.
        • Weingärtner S.
        • Ricketts L.
        • et al.
        T1mapping in cardiac MRI.
        Heart Fail Rev. 2017; 22: 415-430
        • Taylor A.J.
        • Salerno M.
        • Dharmakumar R.
        • et al.
        T1 mapping basic techniques and clinical applications.
        JACC Cardiovasc Imaging. 2016; 9: 67-81
        • Aus dem Siepen F.
        • Baumgärtner C.
        • Müller-Henessen M.
        • et al.
        Variability of cardiovascular magnetic resonance (CMR) T1 mapping parameters in healthy volunteers during long-term follow-up.
        Open Heart. 2018; 5: e000717
        • Arheden H.
        • Saeed M.
        • Higgins C.B.
        • et al.
        Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99m Tc-DTPA autoradiography in rats.
        Radiology. 1999; 211: 698-708
        • Robison S.
        • Karur G.R.
        • Wald R.M.
        • et al.
        Noninvasive hematocrit assessment for cardiovascular magnetic resonance extracellular volume quantification using a point-of-care device and synthetic derivation.
        J Cardiovasc Magn Reson. 2018; 20: 1-9
        • Treibel T.A.
        • Fontana M.
        • Maestrini V.
        • et al.
        Automatic measurement of the myocardial interstitium synthetic extracellular volume quantification without hematocrit sampling.
        JACC Cardiovasc Imaging. 2016; 9: 54-63
        • Engblom H.
        • Kanski M.
        • Kopic S.
        • et al.
        Importance of standardizing timing of hematocrit measurement when using cardiovascular magnetic resonance to calculate myocardial extracellular volume (ECV) based on pre- and post-contrast T1 mapping.
        J Cardiovasc Magn Reson. 2018; 20: 46
        • Messroghli D.R.
        • Plein S.
        • Higgins D.M.
        • et al.
        Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution—reproducibility study.
        Radiology. 2006; 238: 1004-1012
        • Roy C.
        • Slimani A.
        • De Meester C.
        • et al.
        Age and sex corrected normal reference values of T1, T2 T2∗and ECV in healthy subjects at 3T CMR.
        J Cardiovasc Magn Reson. 2017; 19: 72
        • Kawel N.
        • Nacif M.
        • Zavodni A.
        • et al.
        T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA.
        J Cardiovasc Magn Reson. 2012; 14: 26
        • Stanisz G.J.
        • Odrobina E.E.
        • Pun J.
        • et al.
        T1, T2 relaxation and magnetization transfer in tissue at 3T.
        Magn Reson Med. 2005; 54: 507-512
        • Teixeira T.
        • Hafyane T.
        • Stikov N.
        • et al.
        Comparison of different cardiovascular magnetic resonance sequences for native myocardial T1 mapping at 3T.
        J Cardiovasc Magn Reson. 2016; 18: 1-12
        • Von Knobelsdorff-Brenkenhoff F.
        • Prothmann M.
        • Dieringer M.A.
        • et al.
        Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications.
        J Cardiovasc Magn Reson. 2013; 15: 53
        • Rauhalammi S.M.O.
        • Mangion K.
        • Barrientos P.H.
        • et al.
        Native myocardial longitudinal (T1) relaxation time: regional, age, and sex associations in the healthy adult heart.
        J Magn Reson Imaging. 2016; 44: 541-548
        • Messroghli D.R.
        • Moon J.C.
        • Ferreira V.M.
        • et al.
        Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2 and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging.
        J Cardiovasc Magn Reson. 2017; 19: 75
        • Moon J.C.
        • Messroghli D.R.
        • Kellman P.
        • et al.
        Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement.
        J Cardiovasc Magn Reson. 2013; 15: 92
        • Sado D.M.
        • Flett A.S.
        • Banypersad S.M.
        • et al.
        Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease.
        Heart. 2012; 98: 1436-1441
        • Kellman P.
        • Arai A.E.
        • Xue H.
        T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision.
        J Cardiovasc Magn Reson. 2013; 15: 56
        • Wassmuth R.
        • Prothmann M.
        • Utz W.
        • et al.
        Variability and homogeneity of cardiovascular magnetic resonance myocardial T2-mapping in volunteers compared to patients with edema.
        J Cardiovasc Magn Reson. 2013; 15: 27
        • Huang T.Y.
        • Liu Y.J.
        • Stemmer A.
        • et al.
        T2 measurement of the human myocardium using a T 2-prepared transient-state trueFISP sequence.
        Magn Reson Med. 2007; 57: 960-966
        • Giri S.
        • Chung Y.C.
        • Merchant A.
        • et al.
        T2 quantification for improved detection of myocardial edema.
        J Cardiovasc Magn Reson. 2009; 11: 56
        • Baeßler B.
        • Schaarschmidt F.
        • Stehning C.
        • et al.
        A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers.
        Eur J Radiol. 2015; 84: 2161-2170
        • Bönner F.
        • Janzarik N.
        • Jacoby C.
        • et al.
        Myocardial T2 mapping reveals age- and sex-related differences in volunteers.
        J Cardiovasc Magn Reson. 2015; 17: 9
        • Gillis P.
        • Roch A.
        • Brooks R.A.
        Corrected equations for susceptibility-induced T2-Shortening.
        J Magn Reson. 1999; 137: 402-407
        • Kirk P.
        • He T.
        • Anderson L.J.
        • et al.
        International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers.
        J Magn Reson Imaging. 2010; 32: 315-319
        • Smith G.C.
        • Carpenter J.P.
        • He T.
        • et al.
        Value of black blood T2* cardiovascular magnetic resonance.
        J Cardiovasc Magn Reson. 2011; 13: 21
        • Pennell D.J.
        • Udelson J.E.
        • Arai A.E.
        • et al.
        Cardiovascular function and treatment in β-thalassemia major: a consensus statement from the American Heart Association.
        Circulation. 2013; 128: 281-308
        • Puntmann V.O.
        • Isted A.
        • Hinojar R.
        • et al.
        T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis.
        Radiology. 2017; 285: 63-72
        • Spieker M.
        • Haberkorn S.
        • Gastl M.
        • et al.
        Abnormal T2 mapping cardiovascular magnetic resonance correlates with adverse clinical outcome in patients with suspected acute myocarditis.
        J Cardiovasc Magn Reson. 2017; 19: 38
        • Captur G.
        • Manisty C.
        • Moon J.C.
        Cardiac MRI evaluation of myocardial disease.
        Heart. 2016; 102: 1429-1435
        • Schelbert E.B.
        • Piehler K.M.
        • Zareba K.M.
        • et al.
        Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage.
        J Am Heart Assoc. 2015; 4: e002613
        • Diao K.
        • Yang Z.
        • Xu H.
        • et al.
        Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis.
        J Cardiovasc Magn Reson. 2016; 18: 92
        • Maron M.S.
        • Maron B.J.
        • Harrigan C.
        • et al.
        Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance.
        J Am Coll Cardiol. 2009; 54: 220-228
        • Swoboda P.P.
        • McDiarmid A.K.
        • Erhayiem B.
        • et al.
        Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete’s heart.
        J Am Coll Cardiol. 2016; 67: 2189-2190
        • Ellims A.H.
        • Iles L.M.
        • Ling L.H.
        • et al.
        A comprehensive evaluation of myocardial fibrosis in hypertrophic cardiomyopathy with cardiac magnetic resonance imaging: linking genotype with fibrotic phenotype.
        Eur Heart J Cardiovasc Imaging. 2014; 15: 1108-1116
        • Flett A.S.
        • Hayward M.P.
        • Ashworth M.T.
        • et al.
        Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans.
        Circulation. 2010; 122: 138-144
        • Puntmann V.O.
        • Voigt T.
        • Chen Z.
        • et al.
        Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy.
        JACC Cardiovasc Imaging. 2013; 6: 475-484
        • Dass S.
        • Suttie J.J.
        • Piechnik S.K.
        • et al.
        Myocardial tissue characterization using magnetic resonance noncontrast T1 mapping in hypertrophic and dilated cardiomyopathy.
        Circ Cardiovasc Imaging. 2012; 5: 726-733
        • Maron B.J.
        • Towbin J.A.
        • Thiene G.
        • et al.
        Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention.
        Circulation. 2006; 113: 1807-1816
        • Assomull R.G.
        • Prasad S.K.
        • Lyne J.
        • et al.
        Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy.
        J Am Coll Cardiol. 2006; 48: 1977-1985
        • Hong Y.J.
        • Park C.H.
        • Kim Y.J.
        • et al.
        Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects.
        Int J Cardiovasc Imaging. 2015; 31: 115-122
        • aus dem Siepen F.
        • Buss S.J.
        • Messroghli D.
        • et al.
        T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 210-216
        • Puntmann V.O.
        • Ucar E.A.
        • Baydes R.H.
        • et al.
        Aortic stiffness and interstitial myocardial fibrosis by native t1 are independently associated with left ventricular remodeling in patients with dilated cardiomyopathy.
        Hypertension. 2014; 64: 762-768
        • Mordi I.
        • Carrick D.
        • Bezerra H.
        • et al.
        T1and T2mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 797-803
        • He T.
        • Gulati A.
        • Jabbour A.
        • et al.
        Cardiovascular magnetic resonance T2 mapping detects myocardial edema in patients with chronic dilated cardiomyopathy.
        J Cardiovasc Magn Reson. 2012; 14: O29
        • Jeserich M.
        • Föll D.
        • Olschewski M.
        • et al.
        Evidence of myocardial edema in patients with nonischemic dilated cardiomyopathy.
        Clin Cardiol. 2012; 35: 371-376
        • Cioffi G.
        • Faggiano P.
        • Vizzardi E.
        • et al.
        Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis.
        Heart. 2011; 97: 301-307
        • Lee S.-P.
        • Lee W.
        • Lee J.M.
        • et al.
        Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis.
        Radiology. 2015; 274: 359-369
        • White S.K.
        • Sado D.M.
        • Fontana M.
        • et al.
        T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique.
        JACC Cardiovasc Imaging. 2013; 6: 955-962
        • Messroghli D.R.
        • Walters K.
        • Plein S.
        • et al.
        Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction.
        Magn Reson Med. 2007; 58: 34-40
        • Dall’Armellina E.
        • Ferreira V.M.
        • Kharbanda R.K.
        • et al.
        Diagnostic value of pre-contrast T1 mapping in acute and chronic myocardial infarction.
        JACC Cardiovasc Imaging. 2013; 6: 739-742
        • Ugander M.
        • Oki A.J.
        • Hsu L.Y.
        • et al.
        Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology.
        Eur Heart J. 2012; 33: 1268-1278
        • Verhaert D.
        • Thavendiranathan P.
        • Giri S.
        • et al.
        Direct T2 quantification of myocardial edema in acute ischemic injury.
        JACC Cardiovasc Imaging. 2011; 4: 269-278
        • Ugander M.
        • Bagi P.S.
        • Oki A.J.
        • et al.
        Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction.
        JACC Cardiovasc Imaging. 2012; 5: 596-603
        • Bulluck H.
        • White S.K.
        • Rosmini S.
        • et al.
        T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients.
        J Cardiovasc Magn Reson. 2015; 17: 73
        • Dall’Armellina E.
        • Piechnik S.K.
        • Ferreira V.M.
        • et al.
        Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction.
        J Cardiovasc Magn Reson. 2012; 14: 15
        • Manrique A.
        • Gerbaud E.
        • Derumeaux G.
        • et al.
        Cardiac magnetic resonance demonstrates myocardial oedema in remote tissue early after reperfused myocardial infarction.
        Arch Cardiovasc Dis. 2009; 102: 633-639
        • Carrick D.
        • Haig C.
        • Rauhalammi S.
        • et al.
        Pathophysiology of LV remodeling in survivors of STEMI inflammation, remote myocardium, and prognosis.
        JACC Cardiovasc Imaging. 2015; 8: 779-789
        • Chan W.
        • Duffy S.J.
        • White D.A.
        • et al.
        Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion.
        JACC Cardiovasc Imaging. 2012; 5: 884-893
        • Carberry J.
        • Carrick D.
        • Haig C.
        • et al.
        Remote zone extracellular volume and left ventricular remodeling in survivors of ST-elevation myocardial infarction.
        Hypertension. 2016; 68: 385-391
        • Carrick D.
        • Haig C.
        • Rauhalammi S.
        • et al.
        Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors.
        Eur Heart J. 2016; 37: 1044-1059
        • Pedersen S.F.
        • Thrysøe S.A.
        • Robich M.P.
        • et al.
        Assessment of intramyocardial hemorrhage by T1-weighted cardiovascular magnetic resonance in reperfused acute myocardial infarction.
        J Cardiovasc Magn Reson. 2012; 14: 59
        • Zia M.I.
        • Ghugre N.R.
        • Connelly K.A.
        • et al.
        Characterizing myocardial edema and hemorrhage using quantitative T2 and T2* mapping at multiple time intervals post ST-segment elevation myocardial infarction.
        Circ Cardiovasc Imaging. 2012; 5: 566-572
        • Kali A.
        • Tang R.L.
        • Kumar A.
        • et al.
        Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging: T2 versus T2.
        Radiology. 2013; 269: 387-395
        • O H-Ici D.
        • Jeuthe S.
        • Al-Wakeel N.
        • et al.
        T1 mapping in ischaemic heart disease.
        Eur Heart J Cardiovasc Imaging. 2014; 15: 597-602
        • Liu A.
        • Wijesurendra R.S.
        • Liu J.M.
        • et al.
        Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease.
        J Am Coll Cardiol. 2018; 71: 957-968
        • Usman A.A.
        • Taimen K.
        • Wasielewski M.
        • et al.
        Cardiac magnetic resonance T2 mapping in the monitoring and follow-up of acute cardiac transplant rejection: a pilot study.
        Circ Cardiovasc Imaging. 2012; 5: 782-790
        • Crouser E.D.
        • Ono C.
        • Tran T.
        • et al.
        Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping.
        Am J Respir Crit Care Med. 2014; 189: 109-112
        • Thavendiranathan P.
        • Walls M.
        • Giri S.
        • et al.
        Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping.
        Circ Cardiovasc Imaging. 2012; 5: 102-110
        • Ferreira V.M.
        • Piechnik S.K.
        • Dall’Armellina E.
        • et al.
        T1 Mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-Weighted and late gadolinium enhanced imaging.
        JACC Cardiovasc Imaging. 2013; 6: 1048-1058
        • Lurz P.
        • Luecke C.
        • Eitel I.
        • et al.
        Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis the MyoRacer-trial.
        J Am Coll Cardiol. 2016; 67: 1800-1811
        • Ferreira V.M.
        • Piechnik S.K.
        • Dall’Armellina E.
        • et al.
        Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents.
        J Cardiovasc Magn Reson. 2014; 16: 36
        • Luetkens J.A.
        • Homsi R.
        • Sprinkart A.M.
        • et al.
        Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 154-161
        • Vermes E.
        • Pantaléon C.
        • Auvet A.
        • et al.
        Cardiovascular magnetic resonance in heart transplant patients: diagnostic value of quantitative tissue markers: T2 mapping and extracellular volume fraction, for acute rejection diagnosis.
        J Cardiovasc Magn Reson. 2018; 20: 59
        • Miller C.A.
        • Naish J.H.
        • Shaw S.M.
        • et al.
        Multiparametric cardiovascular magnetic resonance surveillance of acute cardiac allograft rejection and characterisation of transplantation-associated myocardial injury: a pilot study.
        J Cardiovasc Magn Reson. 2014; 16: 52
        • Scally C.
        • Rudd A.
        • Mezincescu A.
        • et al.
        Persistent long-term structural, functional, and metabolic changes after stress-induced (Takotsubo) cardiomyopathy.
        Circulation. 2018; 137: 1039-1048
        • Banypersad S.M.
        • Moon J.C.
        • Whelan C.
        • et al.
        Updates in cardiac amyloidosis: a review.
        J Am Heart Assoc. 2012; 1: e000364
        • Maceira A.M.
        • Joshi J.
        • Prasad S.K.
        • et al.
        Cardiovascular magnetic resonance in cardiac amyloidosis.
        Circulation. 2005; 111: 186-193
        • Fontana M.
        • Banypersad S.M.
        • Treibel T.A.
        • et al.
        Native T1 mapping in transthyretin amyloidosis.
        JACC Cardiovasc Imaging. 2014; 7: 157-165
        • Karamitsos T.D.
        • Piechnik S.K.
        • Banypersad S.M.
        • et al.
        Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis.
        JACC Cardiovasc Imaging. 2013; 6: 488-497
        • Bull S.
        • White S.K.
        • Piechnik S.K.
        • et al.
        Human non-contrast T1 values and correlation with histology in diffuse fibrosis.
        Heart. 2013; 99: 932-937
        • Brooks J.
        • Kramer C.M.
        • Salerno M.
        Markedly increased volume of distribution of gadolinium in cardiac amyloidosis demonstrated by T1 mapping.
        J Magn Reson Imaging. 2013; 38: 1591-1595
        • Banypersad S.M.
        • Fontana M.
        • Maestrini V.
        • et al.
        T1 mapping and survival in systemic light-chain amyloidosis.
        Eur Heart J. 2015; 36: 244-251
        • Sparrow P.
        • Amirabadi A.
        • Sussman M.S.
        • et al.
        Quantitative assessment of myocardial T2 relaxation times in cardiac amyloidosis.
        J Magn Reson Imaging. 2009; 30: 942-946
        • Fontana M.
        • Banypersad S.M.
        • Treibel T.A.
        • et al.
        Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study.
        Radiology. 2015; 277: 388-397
        • Richards D.B.
        • Cookson L.M.
        • Berges A.C.
        • et al.
        Therapeutic clearance of amyloid by antibodies to serum amyloid P component.
        N Engl J Med. 2015; 373: 1106-1114
        • Clarke J.T.R.
        Narrative review: Fabry disease.
        Ann Intern Med. 2007; 146: 425-433
        • Deva D.P.
        • Hanneman K.
        • Li Q.
        • et al.
        Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease.
        J Cardiovasc Magn Reson. 2016; 18: 14
        • Thompson R.B.
        • Chow K.
        • Khan A.
        • et al.
        T1mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex.
        Circ Cardiovasc Imaging. 2013; 6: 637-645
        • Sado D.M.
        • White S.K.
        • Piechnik S.K.
        • et al.
        Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping.
        Circ Cardiovasc Imaging. 2013; 6: 392-398
        • Pica S.
        • Sado D.M.
        • Maestrini V.
        • et al.
        Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance.
        J Cardiovasc Magn Reson. 2014; 16: 99
        • Karur G.R.
        • Robison S.
        • Iwanochko R.M.
        • et al.
        Use of myocardial T1 mapping at 3.0 t to differentiate Anderson-Fabry disease from hypertrophic cardiomyopathy.
        Radiology. 2018; 288: 398-406
        • Nordin S.
        • Kozor R.
        • Bulluck H.
        • et al.
        Cardiac Fabry disease with late gadolinium enhancement is a chronic inflammatory cardiomyopathy.
        J Am Coll Cardiol. 2016; 15: 1707-1708
        • Nordin S.
        • Kozor R.
        • Baig S.
        • et al.
        Cardiac phenotype of prehypertrophic Fabry disease.
        Circ Cardiovasc Imaging. 2018; 11: e007168
        • Carpenter J.P.
        • He T.
        • Kirk P.
        • et al.
        On T2* magnetic resonance and cardiac iron.
        Circulation. 2011; 123: 1519-1528
        • Kirk P.
        • Roughton M.
        • Porter J.B.
        • et al.
        Cardiac T2* magnetic resonance for prediction of cardiac complications in Thalassemia Major.
        Circulation. 2009; 120: 1961-1968
        • Sado D.M.
        • Maestrini V.
        • Piechnik S.K.
        • et al.
        Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload.
        J Magn Reson Imaging. 2015; 41: 1505-1511
        • Alam M.H.
        • Auger D.
        • Smith G.C.
        • et al.
        T1 at 1.5T and 3T compared with conventional T2* at 1.5T for cardiac siderosis.
        J Cardiovasc Magn Reson. 2015; 17: 102
        • Hanneman K.
        • Nguyen E.T.
        • Thavendiranathan P.
        • et al.
        Quantification of myocardial extracellular volume fraction with cardiac MR imaging in Thalassemia major.
        Radiology. 2016; 279: 720-730
        • McDiarmid A.K.
        • Swoboda P.P.
        • Erhayiem B.
        • et al.
        Athletic cardiac adaptation in males is a consequence of elevated myocyte mass.
        Circ Cardiovasc Imaging. 2016; 9: e003579
        • Hinojar R.
        • Foote L.
        • Sangle S.
        • et al.
        Native T1 and T2 mapping by CMR in lupus myocarditis: disease recognition and response to treatment.
        Int J Cardiol. 2016; 222: 717-726
        • Greulich S.
        • Mayr A.
        • Kitterer D.
        • et al.
        Advanced myocardial tissue characterisation by a multi-component CMR protocol in patients with rheumatoid arthritis.
        Eur Radiol. 2017; 27: 4639-4649
        • Ntusi N.A.B.
        • Piechnik S.K.
        • Francis J.M.
        • et al.
        Diffuse myocardial fibrosis and inflammation in rheumatoid arthritis: insights from CMR T1 Mapping.
        JACC Cardiovasc Imaging. 2015; 8: 526-536
        • Hanneman K.
        • Crean A.M.
        • Wintersperger B.J.
        • et al.
        The relationship between cardiovascular magnetic resonance imaging measurement of extracellular volume fraction and clinical outcomes in adults with repaired tetralogy of Fallot.
        Eur Heart J Cardiovasc Imaging. 2018; 19: 777-784
        • Kozak M.F.
        • Redington A.
        • Yoo S.J.
        • et al.
        Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study.
        Pediatr Radiol. 2014; 44: 403-409
        • Kellman P.
        • Wilson J.R.
        • Xue H.
        • et al.
        Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience.
        J Cardiovasc Magn Reson. 2012; 14: 64
        • Liu C.Y.
        • Liu Y.C.
        • Wu C.
        • et al.
        Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1mapping: MESA (Multi-Ethnic Study of Atherosclerosis).
        J Am Coll Cardiol. 2013; 62: 1280-1287
        • Piechnik S.K.
        • Ferreira V.M.
        • Lewandowski A.J.
        • et al.
        Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI.
        J Cardiovasc Magn Reson. 2013; 15: 13
        • Chow K.
        • Flewitt J.A.
        • Green J.D.
        • et al.
        Saturation recovery single-shot acquisition (SASHA) for myocardial T 1 mapping.
        Magn Reson Med. 2014; 71: 2082-2095
        • Reiter U.
        • Reiter G.
        • Dorr K.
        • et al.
        Normal diastolic and systolic myocardial T1 values at 1.5-T MR imaging: correlations and blood normalization.
        Radiology. 2014; 271: 365-372
        • Dabir D.
        • Child N.
        • Kalra A.
        • et al.
        Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study.
        J Cardiovasc Magn Reson. 2014; 16: 69
        • Giri S.
        • Shah S.
        • Xue H.
        • et al.
        Myocardial T2 mapping with respiratory navigator and automatic nonrigid motion correction.
        Magn Reson Med. 2012; 68: 1570-1578
        • Westwood M.
        • Anderson L.J.
        • Firmin D.N.
        • et al.
        A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload.
        J Magn Reson Imaging. 2003; 18: 33-39
        • Pepe A.
        • Positano V.
        • Santarelli M.F.
        • et al.
        Multislice multiecho T2* cardiovascular magnetic resonance for detection of the heterogeneous distribution of myocardial iron overload.
        J Magn Reson Imaging. 2006; 23: 662-668
        • Kirk P.
        • Smith G.C.
        • Roughton M.
        • et al.
        Myocardial T2* is not affected by ageing, myocardial fibrosis, or impaired left ventricular function.
        J Magn Reson Imaging. 2010; 32: 1095-1098